Abstract

We reportlaser induced self-assembly of silver nanoparticles via plasmonic interactions. By focusing a near-infrared laser in silver nanoparticle suspension, nanoparticle assembly is formed as a result of optical trapping. The shape of Rayleigh scattering spectra of the nanoassembly strongly depends on the polarization of the laser beam. Particularly, a linearly polarized laser induces the formation of arrayed structure along the laser polarization, that shows a sharp plasmon resonance band and harnesses excellent plasmonic properties applicable for nonlinear surface enhanced spectroscopy.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  2. M. Kawasaki and S. Mine, “Enhanced molecular fluorescence near thick Ag island film of large pseudotabular nanoparticles,” J. Phys. Chem. B 109(36), 17254–17261 (2005).
    [CrossRef]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  4. H. Kneipp and K. Kneipp, “Surface-enhanced hyper Raman scattering in silver colloidal solutions,” J. Raman Spectrosc. 36(6-7), 551–554 (2005).
    [CrossRef]
  5. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
    [CrossRef] [PubMed]
  6. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
    [CrossRef]
  7. M. Inoue and K. Ohtaka, “Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
    [CrossRef]
  8. H. Xu, “Calculation of the near field of aggregates of arbitrary spheres,” J. Opt. Soc. Am. A 21(5), 804–809 (2004).
    [CrossRef]
  9. C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061410 (2004).
    [CrossRef]
  10. C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021408 (2005).
    [CrossRef] [PubMed]
  11. Y. Tanaka, H. Yoshikawa, T. Asahi, and H. Masuhara, “Laser microfixation of highly ordered J-aggregates on a glass substrate,” Appl. Phys. Lett. 91(4), 041102 (2007).
    [CrossRef]
  12. Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Laser induced self-assembly of pseudoisocyanine J-aggregates,” J. Phys. Chem. C 111(50), 18457–18460 (2007).
    [CrossRef]
  13. P. Jordan, J. Cooper, G. McNay, F. T. Docherty, D. Graham, W. E. Smith, G. Sinclair, and M. J. Padgett, “Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation,” Opt. Express 13(11), 4148–4153 (2005).
    [CrossRef] [PubMed]
  14. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [CrossRef] [PubMed]
  15. K. Svobada and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [CrossRef]
  16. S. Ito, H. Yoshikawa, and H. Masuhara, “Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
    [CrossRef]
  17. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [CrossRef] [PubMed]
  18. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [CrossRef] [PubMed]
  19. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
    [CrossRef] [PubMed]
  20. F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
    [CrossRef] [PubMed]
  21. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32(9), 1156–1158 (2007).
    [CrossRef] [PubMed]
  22. Z. Li, H. Xu, and M. Kall, “Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam,” Phys. Rev. B 77(8), 085412 (2008).
    [CrossRef]
  23. P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
    [CrossRef]
  24. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
    [CrossRef] [PubMed]
  25. H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
    [CrossRef]
  26. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996).
    [CrossRef]
  27. D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical par- ticles,” J. Opt. Soc. Am. A 19(5), 881–893 (2002).
    [CrossRef]
  28. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 1992).
  29. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [CrossRef]
  30. A. Sivanesan, P. Kannan, and S. A. John, “Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode,” Electrochim. Acta 52(28), 8118–8124 (2007).
    [CrossRef]
  31. M. Kerker, O. Siiman, L. A. Bumm, and D. S. Wang, “Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver,” Appl. Opt. 19(19), 3253–3255 (1980).
    [CrossRef] [PubMed]

2008 (4)

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Z. Li, H. Xu, and M. Kall, “Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam,” Phys. Rev. B 77(8), 085412 (2008).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

2007 (5)

A. Sivanesan, P. Kannan, and S. A. John, “Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode,” Electrochim. Acta 52(28), 8118–8124 (2007).
[CrossRef]

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32(9), 1156–1158 (2007).
[CrossRef] [PubMed]

Y. Tanaka, H. Yoshikawa, T. Asahi, and H. Masuhara, “Laser microfixation of highly ordered J-aggregates on a glass substrate,” Appl. Phys. Lett. 91(4), 041102 (2007).
[CrossRef]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Laser induced self-assembly of pseudoisocyanine J-aggregates,” J. Phys. Chem. C 111(50), 18457–18460 (2007).
[CrossRef]

2006 (2)

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[CrossRef] [PubMed]

2005 (7)

P. Jordan, J. Cooper, G. McNay, F. T. Docherty, D. Graham, W. E. Smith, G. Sinclair, and M. J. Padgett, “Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation,” Opt. Express 13(11), 4148–4153 (2005).
[CrossRef] [PubMed]

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[CrossRef] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

M. Kawasaki and S. Mine, “Enhanced molecular fluorescence near thick Ag island film of large pseudotabular nanoparticles,” J. Phys. Chem. B 109(36), 17254–17261 (2005).
[CrossRef]

H. Kneipp and K. Kneipp, “Surface-enhanced hyper Raman scattering in silver colloidal solutions,” J. Raman Spectrosc. 36(6-7), 551–554 (2005).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021408 (2005).
[CrossRef] [PubMed]

2004 (2)

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061410 (2004).
[CrossRef]

H. Xu, “Calculation of the near field of aggregates of arbitrary spheres,” J. Opt. Soc. Am. A 21(5), 804–809 (2004).
[CrossRef]

2002 (3)

D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical par- ticles,” J. Opt. Soc. Am. A 19(5), 881–893 (2002).
[CrossRef]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

2001 (1)

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

1996 (1)

1994 (1)

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

1983 (1)

M. Inoue and K. Ohtaka, “Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

1980 (1)

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Adachi, T.

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

Asahi, T.

Y. Tanaka, H. Yoshikawa, T. Asahi, and H. Masuhara, “Laser microfixation of highly ordered J-aggregates on a glass substrate,” Appl. Phys. Lett. 91(4), 041102 (2007).
[CrossRef]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Block, S. M.

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Brus, L. E.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[CrossRef] [PubMed]

Bumm, L. A.

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

Cooper, J.

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Docherty, F. T.

Graham, D.

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Guyot-Sionnest, P.

Hallock, A. J.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[CrossRef] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Hosokawa, C.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021408 (2005).
[CrossRef] [PubMed]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061410 (2004).
[CrossRef]

Inoue, M.

M. Inoue and K. Ohtaka, “Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

Ito, S.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

John, S. A.

A. Sivanesan, P. Kannan, and S. A. John, “Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode,” Electrochim. Acta 52(28), 8118–8124 (2007).
[CrossRef]

Jordan, P.

Kall, M.

Z. Li, H. Xu, and M. Kall, “Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam,” Phys. Rev. B 77(8), 085412 (2008).
[CrossRef]

Käll, M.

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

Kannan, P.

A. Sivanesan, P. Kannan, and S. A. John, “Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode,” Electrochim. Acta 52(28), 8118–8124 (2007).
[CrossRef]

Kawasaki, M.

M. Kawasaki and S. Mine, “Enhanced molecular fluorescence near thick Ag island film of large pseudotabular nanoparticles,” J. Phys. Chem. B 109(36), 17254–17261 (2005).
[CrossRef]

Kerker, M.

Kim, H. Y.

Kneipp, H.

H. Kneipp and K. Kneipp, “Surface-enhanced hyper Raman scattering in silver colloidal solutions,” J. Raman Spectrosc. 36(6-7), 551–554 (2005).
[CrossRef]

Kneipp, K.

H. Kneipp and K. Kneipp, “Surface-enhanced hyper Raman scattering in silver colloidal solutions,” J. Raman Spectrosc. 36(6-7), 551–554 (2005).
[CrossRef]

Li, Z.

Z. Li, H. Xu, and M. Kall, “Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam,” Phys. Rev. B 77(8), 085412 (2008).
[CrossRef]

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

Liu, M.

Mackowski, D. W.

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Masuhara, H.

Y. Tanaka, H. Yoshikawa, T. Asahi, and H. Masuhara, “Laser microfixation of highly ordered J-aggregates on a glass substrate,” Appl. Phys. Lett. 91(4), 041102 (2007).
[CrossRef]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Laser induced self-assembly of pseudoisocyanine J-aggregates,” J. Phys. Chem. C 111(50), 18457–18460 (2007).
[CrossRef]

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021408 (2005).
[CrossRef] [PubMed]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061410 (2004).
[CrossRef]

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Matsui, T.

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

McNay, G.

Mine, S.

M. Kawasaki and S. Mine, “Enhanced molecular fluorescence near thick Ag island film of large pseudotabular nanoparticles,” J. Phys. Chem. B 109(36), 17254–17261 (2005).
[CrossRef]

Mishchenko, M. I.

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Nakajima, K.

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

Nieto-Vesperinas, M.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32(9), 1156–1158 (2007).
[CrossRef] [PubMed]

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Ohtaka, K.

M. Inoue and K. Ohtaka, “Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

Padgett, M. J.

Pelton, M.

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Quidant, R.

Redmond, P. L.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[CrossRef] [PubMed]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Sazaki, G.

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

Scherer, N. F.

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Siiman, O.

Sinclair, G.

Sivanesan, A.

A. Sivanesan, P. Kannan, and S. A. John, “Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode,” Electrochim. Acta 52(28), 8118–8124 (2007).
[CrossRef]

Smith, G.

Smith, W. E.

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Svedberg, F.

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

Svobada, K.

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Tanaka, Y.

Y. Tanaka, H. Yoshikawa, T. Asahi, and H. Masuhara, “Laser microfixation of highly ordered J-aggregates on a glass substrate,” Appl. Phys. Lett. 91(4), 041102 (2007).
[CrossRef]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Laser induced self-assembly of pseudoisocyanine J-aggregates,” J. Phys. Chem. C 111(50), 18457–18460 (2007).
[CrossRef]

Wang, D. S.

Xu, H.

Z. Li, H. Xu, and M. Kall, “Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam,” Phys. Rev. B 77(8), 085412 (2008).
[CrossRef]

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

H. Xu, “Calculation of the near field of aggregates of arbitrary spheres,” J. Opt. Soc. Am. A 21(5), 804–809 (2004).
[CrossRef]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

Yoshikawa, H.

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Laser induced self-assembly of pseudoisocyanine J-aggregates,” J. Phys. Chem. C 111(50), 18457–18460 (2007).
[CrossRef]

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

Y. Tanaka, H. Yoshikawa, T. Asahi, and H. Masuhara, “Laser microfixation of highly ordered J-aggregates on a glass substrate,” Appl. Phys. Lett. 91(4), 041102 (2007).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021408 (2005).
[CrossRef] [PubMed]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061410 (2004).
[CrossRef]

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Zelenina, A. S.

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Y. Tanaka, H. Yoshikawa, T. Asahi, and H. Masuhara, “Laser microfixation of highly ordered J-aggregates on a glass substrate,” Appl. Phys. Lett. 91(4), 041102 (2007).
[CrossRef]

Electrochim. Acta (1)

A. Sivanesan, P. Kannan, and S. A. John, “Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode,” Electrochim. Acta 52(28), 8118–8124 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

H. Yoshikawa, T. Adachi, G. Sazaki, T. Matsui, K. Nakajima, and H. Masuhara, “Surface enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution,” J. Opt. A, Pure Appl. Opt. 9(8), S164–S171 (2007).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (1)

M. Kawasaki and S. Mine, “Enhanced molecular fluorescence near thick Ag island film of large pseudotabular nanoparticles,” J. Phys. Chem. B 109(36), 17254–17261 (2005).
[CrossRef]

J. Phys. Chem. C (1)

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Laser induced self-assembly of pseudoisocyanine J-aggregates,” J. Phys. Chem. C 111(50), 18457–18460 (2007).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Inoue and K. Ohtaka, “Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

J. Raman Spectrosc. (1)

H. Kneipp and K. Kneipp, “Surface-enhanced hyper Raman scattering in silver colloidal solutions,” J. Raman Spectrosc. 36(6-7), 551–554 (2005).
[CrossRef]

Nano Lett. (4)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (3)

Z. Li, H. Xu, and M. Kall, “Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam,” Phys. Rev. B 77(8), 085412 (2008).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64(3), 035422 (2001).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061410 (2004).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021408 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Other (2)

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) SEM image of and silver nanoparticles and (b) absorption spectrum of these colloidal samples. (c) Schematic of experimental setup.

Fig. 2
Fig. 2

Consecutive Rayleigh scattering spectra (from bottom to top) of silver nanoparticles optically trapped in the laser focus with (a) linear and (b) circular polarization. These spectra were recorded every 5 sec from the start of laser irradiation.

Fig. 3
Fig. 3

Rayleigh scattering spectra of assemblies of the silver nanoparticles formed in the laser focus with (a) linear and (b) circular polarization. These spectra were recorded at 20 sec after the start of laser irradiation

Fig. 4
Fig. 4

Normalized intensity of the plasmon band maxima vs. rotation angles of an analyzer. The dashed line indicates a fitted cos2 θ curve. The arrows show the laser polarization direction and analyzer direction. The analyzer was placed in front of the detector as shown in Fig. 1 (c).

Fig. 5
Fig. 5

Histograms of (a, c) peak wavelength and (b, d) bandwidth of the plasmon resonance bands in the spectral measurements repeated under the same conditions as for Fig. 1. (a, b) linear and (c, d) circular polarization of the laser beam.

Fig. 6
Fig. 6

(a) DLVO potential U DLVO (dotted line), attractive potential U att (black solid line), and repulsive potential U rep (gray solid line). U att and U rep correspond to the laser induced interparticle interactions in cases of the particle alignment parallel and perpendicular to laser polarization, respectively. (b) shows gray and black lines representing U DLVO + U rep and U DLVO + U att, respectively. They are plotted in units of kT against the center-to-center distance r. The parameter values for calculations were set as follows: effective Hamaker constant, A H = 2.5 eV [28]; particle surface potential (zeta potential), Ψ 0 = −46.5 mV; and Debye length, 1/κ = 5.5 nm. Debye length was calculated from the electrolyte concentration (3.05 mM) in aqueous solution [28].

Fig. 7
Fig. 7

Emission spectra of assemblies of the silver nanoparticles formed in the laser focus. (a) linear and (b) circular polarization of the laser beam. The inset in (a) displays an enlarged spectrum plotted as a function of Raman shift from double frequency of the irradiated laser beam.

Metrics