Abstract

Quantitative phase microscopy allows for the study of the surface morphology and dynamics of transparent biological specimens. Although phase data often contains coupled subsurface information, decoupling the surface and subsurface components is often very difficult or impossible. We hereby present a simple procedure which exploits simultaneous obtained quantitative phase and shear-force feedback topography data to extract subsurface sample information. Our results reveal subsurface features in fabricated samples and fish erythrocytes.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. W. Richards, “Phase microscopy 1950-1954,” Science 120(3121), 631–639 (1954).
    [CrossRef] [PubMed]
  2. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
    [CrossRef] [PubMed]
  3. M. Pluta, “Nomarski's DIC microscopy: a review,” Proc. SPIE 1846, 10–25 (1994).
    [CrossRef]
  4. X. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. Zhang, and T. Hiruma, “Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples,” Opt. Lett. 31(12), 1830–1832 (2006).
    [CrossRef] [PubMed]
  5. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [CrossRef] [PubMed]
  6. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46(10), 1836–1842 (2007).
    [CrossRef] [PubMed]
  7. W. S. Rockward, A. L. Thomas, B. Zhao, and C. A. Dimarzio, “Quantitative phase measurements using optical quadrature microscopy,” Appl. Opt. 47(10), 1684–1696 (2008).
    [CrossRef] [PubMed]
  8. H. W. Wolberg, W. N. Street, and O. L. Mangasarian, “Importance of Nuclear Morphology in Breast,” Cancer Prognosis Clin. Cancer Res. 5, 3542–3548 (1999).
  9. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
    [CrossRef] [PubMed]
  10. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005), http://www.opticsinfobase.org/abstract.cfm?&uri=oe-13-23-9361 .
    [CrossRef] [PubMed]
  11. R. E. Marquis, “Immersion refractometry of isolated bacterial cell walls,” J. Bacteriol. 116(3), 1273–1279 (1973).
    [PubMed]
  12. L. K. Chin, C. S. Lim, P. H. Yap, J. H. Ng, J. Z. Hao, S. Takahashi, and A. Q. Liu, “Single Living Cell Refractometry using FBG-Based Resonant Cavity,” Solid-State Sensors, Actuators and Microsystems Conference, 2007. Transducers 2007. International 10–14 June 2007, pp. 851–854.
  13. J. Lai, Z. Li, C. Wang, and A. He, “Experimental measurement of the refractive index of biological tissues by total internal reflection,” Appl. Opt. 44(10), 1845–1849 (2005).
    [CrossRef] [PubMed]
  14. K. Edward, T. W. Mayes, B. Hocken, and F. Farahi, “Trimodal imaging system capable of quantitative phase imaging without 2 π ambiguities,” Opt. Lett. 33(3), 216–218 (2008).
    [CrossRef] [PubMed]
  15. M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, “Phase unwrapping with a regularized phase-tracking system,” Appl. Opt. 37(10), 1917–1923 (1998).
    [CrossRef]
  16. L. Zhang, Y. Zhang, C. Zhang, Y. Zhao, and X. Liu, “Terahertz multiwavelength phase imaging without 2π ambiguity,” Opt. Lett. 31(24), 3668–3670 (2006).
    [CrossRef] [PubMed]
  17. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
    [CrossRef] [PubMed]
  18. F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
    [PubMed]
  19. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 77, 4272–4276 (2000).
  20. E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever, “Image registration for digital subtraction angiography,” Int. J. Comput. Vis. 31(2/3), 227–246 (1999).
    [CrossRef]
  21. M. Najiah, M. Dahirah, H. Marina, S. W. Lee, and W. H. Nazaha, “Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia,” Research J. Fisheries and Hydrobio. 3, 32–35 (2008).

2008 (3)

2007 (1)

2006 (3)

2005 (2)

2004 (1)

2001 (1)

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

2000 (1)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 77, 4272–4276 (2000).

1999 (2)

E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever, “Image registration for digital subtraction angiography,” Int. J. Comput. Vis. 31(2/3), 227–246 (1999).
[CrossRef]

H. W. Wolberg, W. N. Street, and O. L. Mangasarian, “Importance of Nuclear Morphology in Breast,” Cancer Prognosis Clin. Cancer Res. 5, 3542–3548 (1999).

1998 (1)

1994 (1)

M. Pluta, “Nomarski's DIC microscopy: a review,” Proc. SPIE 1846, 10–25 (1994).
[CrossRef]

1973 (2)

C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
[CrossRef] [PubMed]

R. E. Marquis, “Immersion refractometry of isolated bacterial cell walls,” J. Bacteriol. 116(3), 1273–1279 (1973).
[PubMed]

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[CrossRef] [PubMed]

1954 (1)

O. W. Richards, “Phase microscopy 1950-1954,” Science 120(3121), 631–639 (1954).
[CrossRef] [PubMed]

Badizadegan, K.

Cambi, A.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Choi, W.

Cuche, E.

Cuevas, F. J.

Dahirah, M.

M. Najiah, M. Dahirah, H. Marina, S. W. Lee, and W. H. Nazaha, “Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia,” Research J. Fisheries and Hydrobio. 3, 32–35 (2008).

Dasari, R. R.

de Bakker, B.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

de Lange, F.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Deflores, L. P.

Depeursinge, C.

Dimarzio, C. A.

Edward, K.

Emery, Y.

Farahi, F.

Feld, M. S.

Figdor, C. G.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Garcia-Parajo, M.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 77, 4272–4276 (2000).

He, A.

Hiruma, T.

Hocken, B.

Huijbens, R.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Ikeda, T.

Iwai, H.

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 77, 4272–4276 (2000).

Lai, J.

Lee, S. W.

M. Najiah, M. Dahirah, H. Marina, S. W. Lee, and W. H. Nazaha, “Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia,” Research J. Fisheries and Hydrobio. 3, 32–35 (2008).

Li, X.

Li, Z.

Liu, X.

Lue, N.

Magistretti, P.

Malacara, D.

Mangasarian, O. L.

H. W. Wolberg, W. N. Street, and O. L. Mangasarian, “Importance of Nuclear Morphology in Breast,” Cancer Prognosis Clin. Cancer Res. 5, 3542–3548 (1999).

Marina, H.

M. Najiah, M. Dahirah, H. Marina, S. W. Lee, and W. H. Nazaha, “Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia,” Research J. Fisheries and Hydrobio. 3, 32–35 (2008).

Marquet, P.

Marquis, R. E.

R. E. Marquis, “Immersion refractometry of isolated bacterial cell walls,” J. Bacteriol. 116(3), 1273–1279 (1973).
[PubMed]

Marroquin, J. L.

Mayes, T. W.

Meijering, E. H. W.

E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever, “Image registration for digital subtraction angiography,” Int. J. Comput. Vis. 31(2/3), 227–246 (1999).
[CrossRef]

Najiah, M.

M. Najiah, M. Dahirah, H. Marina, S. W. Lee, and W. H. Nazaha, “Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia,” Research J. Fisheries and Hydrobio. 3, 32–35 (2008).

Nazaha, W. H.

M. Najiah, M. Dahirah, H. Marina, S. W. Lee, and W. H. Nazaha, “Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia,” Research J. Fisheries and Hydrobio. 3, 32–35 (2008).

Pluta, M.

M. Pluta, “Nomarski's DIC microscopy: a review,” Proc. SPIE 1846, 10–25 (1994).
[CrossRef]

Polhemus, C.

Popescu, G.

Rappaz, B.

Rensen, W.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Richards, O. W.

O. W. Richards, “Phase microscopy 1950-1954,” Science 120(3121), 631–639 (1954).
[CrossRef] [PubMed]

Rockward, W. S.

Servin, M.

Street, W. N.

H. W. Wolberg, W. N. Street, and O. L. Mangasarian, “Importance of Nuclear Morphology in Breast,” Cancer Prognosis Clin. Cancer Res. 5, 3542–3548 (1999).

Thomas, A. L.

van Hulst, N.

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Vaughan, J. C.

Viergever, M. A.

E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever, “Image registration for digital subtraction angiography,” Int. J. Comput. Vis. 31(2/3), 227–246 (1999).
[CrossRef]

Wang, C.

Wolberg, H. W.

H. W. Wolberg, W. N. Street, and O. L. Mangasarian, “Importance of Nuclear Morphology in Breast,” Cancer Prognosis Clin. Cancer Res. 5, 3542–3548 (1999).

Yamashita, Y.

Yamauchi, T.

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[CrossRef] [PubMed]

Zhang, C.

Zhang, H.

Zhang, L.

Zhang, Y.

Zhao, B.

Zhao, Y.

Zuiderveld, K. J.

E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever, “Image registration for digital subtraction angiography,” Int. J. Comput. Vis. 31(2/3), 227–246 (1999).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 77, 4272–4276 (2000).

Cancer Prognosis Clin. Cancer Res. (1)

H. W. Wolberg, W. N. Street, and O. L. Mangasarian, “Importance of Nuclear Morphology in Breast,” Cancer Prognosis Clin. Cancer Res. 5, 3542–3548 (1999).

Int. J. Comput. Vis. (1)

E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever, “Image registration for digital subtraction angiography,” Int. J. Comput. Vis. 31(2/3), 227–246 (1999).
[CrossRef]

J. Bacteriol. (1)

R. E. Marquis, “Immersion refractometry of isolated bacterial cell walls,” J. Bacteriol. 116(3), 1273–1279 (1973).
[PubMed]

J. Cell Sci. (1)

F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy,” J. Cell Sci. 114(Pt 23), 4153–4160 (2001).
[PubMed]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (1)

M. Pluta, “Nomarski's DIC microscopy: a review,” Proc. SPIE 1846, 10–25 (1994).
[CrossRef]

Research J. Fisheries and Hydrobio. (1)

M. Najiah, M. Dahirah, H. Marina, S. W. Lee, and W. H. Nazaha, “Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia,” Research J. Fisheries and Hydrobio. 3, 32–35 (2008).

Science (2)

O. W. Richards, “Phase microscopy 1950-1954,” Science 120(3121), 631–639 (1954).
[CrossRef] [PubMed]

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[CrossRef] [PubMed]

Other (1)

L. K. Chin, C. S. Lim, P. H. Yap, J. H. Ng, J. Z. Hao, S. Takahashi, and A. Q. Liu, “Single Living Cell Refractometry using FBG-Based Resonant Cavity,” Solid-State Sensors, Actuators and Microsystems Conference, 2007. Transducers 2007. International 10–14 June 2007, pp. 851–854.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic (a) represents the optical setup. D1, D2, D3 photodiode detectors; BS, beam splitter; QWP, quarter wave plate; HWP, half wave plate. The screen, wave plates and polarizer are used for polarization adjustment of the sample and reference beams. Schematic (b) represents the electrical setup. PI circuits are used to compensate for environmental noise, Z adjustment of a precision XYZ stage and control of an angular displacement glass plate which is attached to a galvanometer.

Fig. 2
Fig. 2

The schematic shown represents a simple biological cell with a single prominent subsurface feature. The nucleus has a height h and protrudes through the cell membrane as is typical. The cell has an external height H.

Fig. 3
Fig. 3

The diagram depicts a typical orientation of the tip relative to the sample. The tilt of the probe is exaggerated to emphasize the displacement between the acquired phase and topography images.

Fig. 4
Fig. 4

A schematic of a fabricated sample with surface/ subsurface features is show in (a). Images (b) and (c) are phase and shear-force feedback (SFF) topography images respectively for a sample such as that shown in (a). The subsurface trench was 10 microns wide and 0.5 microns tall. The white dotted lines in (b) and (c) correspond to the regions from which the line scans shown in (d) were obtained. Image (e) is the intensity image of the sample while (f) represents the extracted subsurface trench. After subtraction and suppression of sharp peaks, a small difference error still remains.

Fig. 5
Fig. 5

Images (a) and (b) depict the phase and SFF topography images respectively of a human red blood cell. It is clear that there are no significant subsurface features present as the phase and SFF images closely agree.

Fig. 6
Fig. 6

Image (a) indicates line scans in the x direction (left) and y direction (right), at identical points in the phase and SFF images shown in 5 (a) and (b). Image (b) is an intensity image of the red blood cell. After registration and subtraction, a difference residue error results as shown in (c). Application of a spike suppression algorithm significantly reduces this error as seen in (d). From this image, it is conclusive that there are no significant subsurface features present.

Fig. 7
Fig. 7

Images (a) and (b) represents the phase and SFF images respectively of a fish’s red blood cell. 3D and 2D representations of the extracted subsurface nucleus are shown in (c) and (d) respectively. The black arrows in (c) point to small pits on the surface of the nucleus. An intensity image of the cell in question is shown in (e). In image (f), the red plot is a line scan of the surface topography (across the dotted white line in (b)) and the blue line is a line scan of the subsurface nucleus (across the dotted white line in (c)). The black lines in (f) indicate the short diameter of the nucleus on the surface and subsurface line scans.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

VΩV2Ω=tan(δe+δs)
h=λ2π(nnnc)(ΔθBA2πλH(nc1))
ΔθBA=2πλH(nc1)
h(x,y)=λ2πΔn(x,y)(ΔθBA(x,y)ΔθBA(x,y))

Metrics