Abstract

Doubly-resonant four-wave mixing (DR-FWM) is a nondegenerate four-wave mixing process in which four photons interact to coherently probe two distinct Raman resonances. We demonstrate DR-FWM microscopy as a label-free and nondestructive molecular imaging modality with high chemical specificity on the submicron scale by imaging alkyne-substituted oleic acid in both aqueous and lipid-rich environments. DR-FWM microscopy is contrasted to coherent anti-Stokes Raman scattering (CARS) microscopy and it is shown that the coherent addition of two simultaneously probed Raman resonances leads to a significant increase in signal without increasing the non-resonant background. Thus, this scheme enables the detection of weak Raman signals through amplification by a strong Raman resonance, potentially increasing the overall detection sensitivity beyond what has been demonstrated by either CARS or stimulated Raman scattering (SRS).

© 2009 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy

Natalie Garrett, Matt Whiteman, and Julian Moger
Opt. Express 19(18) 17563-17574 (2011)

Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers

Zhiyong Wang, Liang Gao, Pengfei Luo, Yaliang Yang, Ahmad A. Hammoudi, Kelvin K. Wong, and Stephen T. C. Wong
Opt. Express 19(9) 7960-7970 (2011)

Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing

Thomas Gottschall, Martin Baumgartl, Aude Sagnier, Jan Rothhardt, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(11) 12004-12013 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  2. M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
    [Crossref]
  3. J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
    [Crossref]
  4. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  5. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
    [Crossref] [PubMed]
  6. C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
    [Crossref]
  7. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [Crossref] [PubMed]
  8. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
    [Crossref] [PubMed]
  9. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [Crossref] [PubMed]
  10. H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
    [Crossref]
  11. S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
    [Crossref]
  12. Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32(22), 3370–3372 (2007).
    [Crossref] [PubMed]
  13. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [Crossref]
  14. I. W. Schie, T. Weeks, G. P. McNerney, S. Fore, J. K. Sampson, S. Wachsmann-Hogiu, J. C. Rutledge, and T. Huser, “Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting,” Opt. Express 16(3), 2168–2175 (2008).
    [Crossref] [PubMed]
  15. R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
    [Crossref]
  16. S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
    [Crossref]
  17. H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
    [Crossref]
  18. W. M. Tolles, J. W. Nibler, J. R. Mcdonald, and A. B. Harvey, “Review of Theory and Application of Coherent Anti-Stokes Raman-Spectroscopy (CARS),” Appl. Spectrosc. 31(4), 253–271 (1977).
    [Crossref]
  19. G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
    [Crossref]

2009 (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

2008 (4)

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref]

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

I. W. Schie, T. Weeks, G. P. McNerney, S. Fore, J. K. Sampson, S. Wachsmann-Hogiu, J. C. Rutledge, and T. Huser, “Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting,” Opt. Express 16(3), 2168–2175 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

2004 (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2002 (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

1991 (1)

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[Crossref]

1983 (1)

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[Crossref]

1978 (1)

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[Crossref]

1977 (1)

1976 (2)

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[Crossref]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

1975 (1)

G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

Attal, B.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[Crossref]

Bjorklund, G.

G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

Bloembergen, N.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[Crossref]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

Chan, J.

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[Crossref]

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Cicerone, M. T.

Druet, S. A. J.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[Crossref]

Evans, C. L.

Fei, H.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[Crossref]

Fore, S.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Ganikhanov, F.

Gustafson, T. K.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[Crossref]

Han, L.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[Crossref]

Harvey, A. B.

He, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hellwarth, R.

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[Crossref]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Huser, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[Crossref]

I. W. Schie, T. Weeks, G. P. McNerney, S. Fore, J. K. Sampson, S. Wachsmann-Hogiu, J. C. Rutledge, and T. Huser, “Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting,” Opt. Express 16(3), 2168–2175 (2008).
[Crossref] [PubMed]

Jurna, M.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Korterik, J. P.

Kramer, S.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[Crossref]

Lee, Y. J.

Liu, Y.

Lotem, H.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[Crossref]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lynch, R.

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[Crossref]

Lynch, R. T.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

Mcdonald, J. R.

McNerney, G. P.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Müller, M.

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
[Crossref]

Nibler, J. W.

Offerhaus, H. L.

Otto, C.

Potma, E. O.

Rutledge, J. C.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

Saha, S.

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[Crossref]

Sampson, J. K.

Schie, I. W.

Taran, J.-P.

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[Crossref]

Tolles, W. M.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

Wachsman-Hogiu, S.

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[Crossref]

Wachsmann-Hogiu, S.

Weeks, T.

Wei, Z.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[Crossref] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

Zhang, Y.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[Crossref]

Zhao, F.

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[Crossref]

Zumbusch, A.

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
[Crossref]

Ann. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref]

Appl. Phys. B (1)

H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991).
[Crossref]

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

Appl. Spectrosc. (1)

ChemPhysChem (1)

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007).
[Crossref]

Curr. Opin. Biotechnol. (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

J. Phys. Chem. B (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Laser Photon. Rev. (1)

J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008).
[Crossref]

Opt. Commun. (1)

R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (3)

S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983).
[Crossref]

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976).
[Crossref]

S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978).
[Crossref]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Energy diagrams describing the CARS process, Case 1, and the non-degenerate four-wave mixing process, Cases 2 and 3. (b) Spontaneous Raman spectrum of modified oleic acid taken with 785 nm excitation and software corrected for instrument response. R’ and R indicate an alkyne, and an aliphatic CH stretch mode, respectively.

Fig. 2
Fig. 2

Images of dried modified oleic acid at different spectral locations within the 2D DR-FWM parameter space. Each image is tuned relative to two Raman resonances. The scale bar is 10 μm and intensity is given in arbitrary units. (a) <IDR-FWM >=124. (b) <IDR-FWM >=100. (c) <IDR-FWM >=199. (d) <IDR-FWM >=117. (e) <IDR-FWM >=240. (f) <IDR-FWM >=354. (g) <IDR-FWM >=315. (h) <IDR-FWM >=374. (i) <IDR-FWM >=626. CARS images were taken of the same sample for comparison. (j) <ICARS >=124. (k) <ICARS >=202. (l) <ICARS >=253.

Fig. 3
Fig. 3

(a) Calculated DR-FWM parameter space. (b-d) Cuts through the 2D space as labeled. (e) CARS peak for comparison. Error bars are one standard deviation of averaged pixel data obtained from the images in Fig. 2.

Fig. 4
Fig. 4

(a) DR-FWM image obtained by probing the 2115 cm−1 and the 2845 cm−1 Raman resonances of modified oleic acid crystal-like structures in a bath of pure oleic acid simultaneously. (b) CARS image of the same region using the 2845 cm−1 Raman resonances. (c) CARS image of the same region using the 2115 cm−1 Raman resonances. (d) Difference between images a) and b) highlighting the enhancement of the 2115 cm−1 signal by DR-FWM. Note that in each case the white line indicates the cross sections shown in the inset.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IDRFWM|χDRFWM(3)|2=(χNR(3))2+χNR(3)(χR(3)+χR(3)*+χR(3)+χR(3)*)+......χR(3)χR(3)*+χR(3)*χR(3)+|χR(3)|2+|χR(3)|2
χCARS(3)=χNR(3)+χR(3)
ICARS(χNR(3))2+|χR(3)|22
|χDRFWM(3)|2=(1+|χR(3)||χR(3)|)2|χR(3)|2

Metrics