Abstract

We explore a simple, inexpensive approach to large particle manipulation using diode laser bar optical trapping. This method overcomes limitations that prevent conventional point laser traps from effectively directing large particles. Expanding a previously developed line optical trap model into larger particle regimes, we verify and examine the advantages and limitations of diode laser bar trapping for manipulating particles greater than 100 µm in diameter within fluidic environments for biochemical, biological, and biomedical applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Chung, M. M. Crane, and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nat. Methods 5(7), 637–643 (2008).
    [CrossRef] [PubMed]
  2. J. P. Freyer, M. E. Wilder, and J. H. Jett, “Viable sorting of intact multicellular spheroids by flow cytometry,” Cytometry 8(4), 427–436 (1987).
    [CrossRef] [PubMed]
  3. J. P. Freyer, D. Fillak, and J. H. Jett, “Use of xantham gum to suspend large particles during flow cytometric analysis and sorting,” Cytometry 10(6), 803–806 (1989).
    [CrossRef] [PubMed]
  4. K. S. Lam, M. Lebl, and V. Krchnák, “The “One-Bead-One-Compound” Combinatorial Library Method,” Chem. Rev. 97(2), 411–448 (1997).
    [CrossRef] [PubMed]
  5. R. T. Stovel, “The influence of particles on jet breakoff,” J. Histochem. Cytochem. 25(7), 813–820 (1977).
    [CrossRef] [PubMed]
  6. J. H. Jett and R. G. Alexander, “Droplet sorting of large particles,” Cytometry 6(5), 484–486 (1985).
    [CrossRef] [PubMed]
  7. H. M. Shapiro, Practical flow cytometry (Wiley-Liss, New York, 2003).
  8. I. Union Biometrica, “COPAS Instruments for Large Particle Flow Cytometry,” (2007).
  9. J. Oakey, J. Allely, and D. W. M. Marr, “Laminar-flow-based separations at the microscale,” Biotechnol. Prog. 18(6), 1439–1442 (2002).
    [CrossRef] [PubMed]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  11. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
    [CrossRef] [PubMed]
  12. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
    [CrossRef] [PubMed]
  13. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
    [CrossRef]
  14. T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules,” Phys. Rev. Lett. 80(7), 1552–1555 (1998).
    [CrossRef]
  15. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [CrossRef] [PubMed]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  17. J. Y. Walz and D. C. Prieve, “Prediction and Measurement of the Optical Trapping Forces on a Microscopic Dielectric Sphere,” Langmuir 8(12), 3073–3082 (1992).
    [CrossRef]

2008

K. H. Chung, M. M. Crane, and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nat. Methods 5(7), 637–643 (2008).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
[CrossRef]

2006

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

2004

2003

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002

J. Oakey, J. Allely, and D. W. M. Marr, “Laminar-flow-based separations at the microscale,” Biotechnol. Prog. 18(6), 1439–1442 (2002).
[CrossRef] [PubMed]

1998

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules,” Phys. Rev. Lett. 80(7), 1552–1555 (1998).
[CrossRef]

1997

K. S. Lam, M. Lebl, and V. Krchnák, “The “One-Bead-One-Compound” Combinatorial Library Method,” Chem. Rev. 97(2), 411–448 (1997).
[CrossRef] [PubMed]

1992

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

J. Y. Walz and D. C. Prieve, “Prediction and Measurement of the Optical Trapping Forces on a Microscopic Dielectric Sphere,” Langmuir 8(12), 3073–3082 (1992).
[CrossRef]

1989

J. P. Freyer, D. Fillak, and J. H. Jett, “Use of xantham gum to suspend large particles during flow cytometric analysis and sorting,” Cytometry 10(6), 803–806 (1989).
[CrossRef] [PubMed]

1987

J. P. Freyer, M. E. Wilder, and J. H. Jett, “Viable sorting of intact multicellular spheroids by flow cytometry,” Cytometry 8(4), 427–436 (1987).
[CrossRef] [PubMed]

1985

J. H. Jett and R. G. Alexander, “Droplet sorting of large particles,” Cytometry 6(5), 484–486 (1985).
[CrossRef] [PubMed]

1977

R. T. Stovel, “The influence of particles on jet breakoff,” J. Histochem. Cytochem. 25(7), 813–820 (1977).
[CrossRef] [PubMed]

Alexander, R. G.

J. H. Jett and R. G. Alexander, “Droplet sorting of large particles,” Cytometry 6(5), 484–486 (1985).
[CrossRef] [PubMed]

Allely, J.

J. Oakey, J. Allely, and D. W. M. Marr, “Laminar-flow-based separations at the microscale,” Biotechnol. Prog. 18(6), 1439–1442 (2002).
[CrossRef] [PubMed]

Applegate, R. W.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Austin, R. H.

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules,” Phys. Rev. Lett. 80(7), 1552–1555 (1998).
[CrossRef]

Bado, P.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Chung, K. H.

K. H. Chung, M. M. Crane, and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nat. Methods 5(7), 637–643 (2008).
[CrossRef] [PubMed]

Crane, M. M.

K. H. Chung, M. M. Crane, and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nat. Methods 5(7), 637–643 (2008).
[CrossRef] [PubMed]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Dugan, M. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Duke, T. A. J.

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules,” Phys. Rev. Lett. 80(7), 1552–1555 (1998).
[CrossRef]

Fillak, D.

J. P. Freyer, D. Fillak, and J. H. Jett, “Use of xantham gum to suspend large particles during flow cytometric analysis and sorting,” Cytometry 10(6), 803–806 (1989).
[CrossRef] [PubMed]

Freyer, J. P.

J. P. Freyer, D. Fillak, and J. H. Jett, “Use of xantham gum to suspend large particles during flow cytometric analysis and sorting,” Cytometry 10(6), 803–806 (1989).
[CrossRef] [PubMed]

J. P. Freyer, M. E. Wilder, and J. H. Jett, “Viable sorting of intact multicellular spheroids by flow cytometry,” Cytometry 8(4), 427–436 (1987).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Jett, J. H.

J. P. Freyer, D. Fillak, and J. H. Jett, “Use of xantham gum to suspend large particles during flow cytometric analysis and sorting,” Cytometry 10(6), 803–806 (1989).
[CrossRef] [PubMed]

J. P. Freyer, M. E. Wilder, and J. H. Jett, “Viable sorting of intact multicellular spheroids by flow cytometry,” Cytometry 8(4), 427–436 (1987).
[CrossRef] [PubMed]

J. H. Jett and R. G. Alexander, “Droplet sorting of large particles,” Cytometry 6(5), 484–486 (1985).
[CrossRef] [PubMed]

Krchnák, V.

K. S. Lam, M. Lebl, and V. Krchnák, “The “One-Bead-One-Compound” Combinatorial Library Method,” Chem. Rev. 97(2), 411–448 (1997).
[CrossRef] [PubMed]

Lam, K. S.

K. S. Lam, M. Lebl, and V. Krchnák, “The “One-Bead-One-Compound” Combinatorial Library Method,” Chem. Rev. 97(2), 411–448 (1997).
[CrossRef] [PubMed]

Lebl, M.

K. S. Lam, M. Lebl, and V. Krchnák, “The “One-Bead-One-Compound” Combinatorial Library Method,” Chem. Rev. 97(2), 411–448 (1997).
[CrossRef] [PubMed]

Lu, H.

K. H. Chung, M. M. Crane, and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nat. Methods 5(7), 637–643 (2008).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[CrossRef] [PubMed]

J. Oakey, J. Allely, and D. W. M. Marr, “Laminar-flow-based separations at the microscale,” Biotechnol. Prog. 18(6), 1439–1442 (2002).
[CrossRef] [PubMed]

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[CrossRef] [PubMed]

J. Oakey, J. Allely, and D. W. M. Marr, “Laminar-flow-based separations at the microscale,” Biotechnol. Prog. 18(6), 1439–1442 (2002).
[CrossRef] [PubMed]

Prieve, D. C.

J. Y. Walz and D. C. Prieve, “Prediction and Measurement of the Optical Trapping Forces on a Microscopic Dielectric Sphere,” Langmuir 8(12), 3073–3082 (1992).
[CrossRef]

Said, A. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Squier, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[CrossRef] [PubMed]

Stovel, R. T.

R. T. Stovel, “The influence of particles on jet breakoff,” J. Histochem. Cytochem. 25(7), 813–820 (1977).
[CrossRef] [PubMed]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004).
[CrossRef] [PubMed]

Walz, J. Y.

J. Y. Walz and D. C. Prieve, “Prediction and Measurement of the Optical Trapping Forces on a Microscopic Dielectric Sphere,” Langmuir 8(12), 3073–3082 (1992).
[CrossRef]

Wilder, M. E.

J. P. Freyer, M. E. Wilder, and J. H. Jett, “Viable sorting of intact multicellular spheroids by flow cytometry,” Cytometry 8(4), 427–436 (1987).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008).
[CrossRef]

Biophys. J.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Biotechnol. Prog.

J. Oakey, J. Allely, and D. W. M. Marr, “Laminar-flow-based separations at the microscale,” Biotechnol. Prog. 18(6), 1439–1442 (2002).
[CrossRef] [PubMed]

Chem. Rev.

K. S. Lam, M. Lebl, and V. Krchnák, “The “One-Bead-One-Compound” Combinatorial Library Method,” Chem. Rev. 97(2), 411–448 (1997).
[CrossRef] [PubMed]

Cytometry

J. P. Freyer, M. E. Wilder, and J. H. Jett, “Viable sorting of intact multicellular spheroids by flow cytometry,” Cytometry 8(4), 427–436 (1987).
[CrossRef] [PubMed]

J. P. Freyer, D. Fillak, and J. H. Jett, “Use of xantham gum to suspend large particles during flow cytometric analysis and sorting,” Cytometry 10(6), 803–806 (1989).
[CrossRef] [PubMed]

J. H. Jett and R. G. Alexander, “Droplet sorting of large particles,” Cytometry 6(5), 484–486 (1985).
[CrossRef] [PubMed]

J. Histochem. Cytochem.

R. T. Stovel, “The influence of particles on jet breakoff,” J. Histochem. Cytochem. 25(7), 813–820 (1977).
[CrossRef] [PubMed]

Lab Chip

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Langmuir

J. Y. Walz and D. C. Prieve, “Prediction and Measurement of the Optical Trapping Forces on a Microscopic Dielectric Sphere,” Langmuir 8(12), 3073–3082 (1992).
[CrossRef]

Nat. Methods

K. H. Chung, M. M. Crane, and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nat. Methods 5(7), 637–643 (2008).
[CrossRef] [PubMed]

Nature

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules,” Phys. Rev. Lett. 80(7), 1552–1555 (1998).
[CrossRef]

Other

H. M. Shapiro, Practical flow cytometry (Wiley-Liss, New York, 2003).

I. Union Biometrica, “COPAS Instruments for Large Particle Flow Cytometry,” (2007).

Supplementary Material (4)

» Media 1: MOV (3546 KB)     
» Media 2: MOV (4464 KB)     
» Media 3: MOV (681 KB)     
» Media 4: MOV (204 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of large particle diode laser bar trapping system

Fig. 2
Fig. 2

Graph of calculated, resultant deflection forces for different line orientations and net gravity/buoyancy force vs. particle diameter for polystyrene particles. Points are discreet numerical calculations. Lines are smoothed curves that follow the numerical calculated model values.

Fig. 3
Fig. 3

(Media 1) Movie of 100 µm particles traversing through water by diode laser bar trapping imaged with 10x objective. The laser is left stationary while the sample is moved.

Fig. 4
Fig. 4

(Media 2) Movie of 115 µm particle falling and then being trapped by a diode laser bar against gravity imaged with 10x objective.

Fig. 5
Fig. 5

(Media 3) Movie of 130 µm particle being deflected across streamlines in 45° diode laser bar trap imaged with 4x objective.

Fig. 6
Fig. 6

(Media 4) Movie of 200 µm particle being deflected across streamlines in 75° diode laser bar trap imaged with 4x objective.

Fig. 7
Fig. 7

Optical trapping model force (triangles) and 75° drag forces vs particle size for different particle velocities.

Metrics