Abstract

A novel technique for studying photon propagation in scattering media is proposed and demonstrated, as is believed, for the first time. Photons propagating through the medium, from a frequency-ramped single-mode diode laser, meet a reference beam from the same source, at a common detector, and beat frequencies corresponding to various temporal delays are observed by heterodyne techniques. Fourier transformation directly yields the temporal dispersion curve. Proof-of-principle experiments on polystyrene foam and a tissue phantom suggest, that the new method, when fully developed, may favorably compete with the more complex time-correlated single-photon counting (TCSPC) and the phase-shift methods, now much employed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
    [Crossref] [PubMed]
  2. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics”, Opt. Lett. 15, 1179 (1990).
    [Crossref] [PubMed]
  3. R. Berg, S. Andersson-Engels, and S. Svanberg, “Time-resolved transillumination imaging”, Optical Tomography, SPIE IS 11, 397 (1993).
  4. A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
    [Crossref] [PubMed]
  5. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy”, J. Biomed. Opt. 12, 014022 (2007).
    [Crossref] [PubMed]
  6. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization using time-resolved detection of diffusely scattered white light”, Opt. Lett. 18, 1697 (1993).
    [Crossref] [PubMed]
  7. Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
    [Crossref]
  8. T. Fujii and T. Fukuchi (eds), Laser Remote Sensing (CRC Press, Boca Raton2005).
  9. K. I. Aoyama, K. Nakagawa, and T. Itoh, “Optical-time domain reflectrometry in a single-mode fiber”, IEEE J. Quant. Electr. 17, 862 (1981).
    [Crossref]
  10. Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
    [Crossref]
  11. M. Toida, T. Ichimura, and H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications”, IEICE Trans. E 74, 1692 (1991).
  12. D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique”, J. Lightwave Technol. LT- 3, 971 (1985).
    [Crossref]
  13. W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser”, IEEE Photonics Technol. Lett.,  2, 902 (1990).
    [Crossref]
  14. C. J. Karlsson and F. Å. A. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance”, Appl. Opt. 38, 3376 (1999).
    [Crossref]
  15. S. R. Chinn and E. A. Swanson, “Optical coherence tomography using a frequency-tunable optical source”, Opt. Lett. 22, 340 (1997).
    [Crossref] [PubMed]
  16. K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering”, IEEE Trans. Biomed. Eng.,  40, 309 (1993).
    [Crossref] [PubMed]

2008 (1)

Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
[Crossref]

2007 (1)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy”, J. Biomed. Opt. 12, 014022 (2007).
[Crossref] [PubMed]

2005 (1)

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

2004 (1)

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

1999 (1)

1997 (1)

1993 (3)

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering”, IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[Crossref] [PubMed]

S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization using time-resolved detection of diffusely scattered white light”, Opt. Lett. 18, 1697 (1993).
[Crossref] [PubMed]

R. Berg, S. Andersson-Engels, and S. Svanberg, “Time-resolved transillumination imaging”, Optical Tomography, SPIE IS 11, 397 (1993).

1991 (1)

M. Toida, T. Ichimura, and H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications”, IEICE Trans. E 74, 1692 (1991).

1990 (2)

W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser”, IEEE Photonics Technol. Lett.,  2, 902 (1990).
[Crossref]

S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics”, Opt. Lett. 15, 1179 (1990).
[Crossref] [PubMed]

1988 (1)

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

1985 (1)

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique”, J. Lightwave Technol. LT- 3, 971 (1985).
[Crossref]

1981 (1)

K. I. Aoyama, K. Nakagawa, and T. Itoh, “Optical-time domain reflectrometry in a single-mode fiber”, IEEE J. Quant. Electr. 17, 862 (1981).
[Crossref]

Abrahamsson, Ch.

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

Andersson-Engels, S.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy”, J. Biomed. Opt. 12, 014022 (2007).
[Crossref] [PubMed]

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization using time-resolved detection of diffusely scattered white light”, Opt. Lett. 18, 1697 (1993).
[Crossref] [PubMed]

R. Berg, S. Andersson-Engels, and S. Svanberg, “Time-resolved transillumination imaging”, Optical Tomography, SPIE IS 11, 397 (1993).

S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics”, Opt. Lett. 15, 1179 (1990).
[Crossref] [PubMed]

Aoyama, K. I.

K. I. Aoyama, K. Nakagawa, and T. Itoh, “Optical-time domain reflectrometry in a single-mode fiber”, IEEE J. Quant. Electr. 17, 862 (1981).
[Crossref]

Arpaia, F.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Berg, R.

Boretsky, R.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Chance, B.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Chinn, S. R.

Cohen, P.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Cubeddu, R.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Culshaw, B.

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique”, J. Lightwave Technol. LT- 3, 971 (1985).
[Crossref]

Danesini, G.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Donald, D. K.

W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser”, IEEE Photonics Technol. Lett.,  2, 902 (1990).
[Crossref]

Einarsdóttír, M.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy”, J. Biomed. Opt. 12, 014022 (2007).
[Crossref] [PubMed]

Finander, M.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Folestad, S.

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

Fujii, T.

T. Fujii and T. Fukuchi (eds), Laser Remote Sensing (CRC Press, Boca Raton2005).

Fukuchi, T.

T. Fujii and T. Fukuchi (eds), Laser Remote Sensing (CRC Press, Boca Raton2005).

Greenfeld, R.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Grönlund, R.

Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
[Crossref]

Guan, Z.G.

Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
[Crossref]

Ichimura, T.

M. Toida, T. Ichimura, and H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications”, IEICE Trans. E 74, 1692 (1991).

Inaba, H.

M. Toida, T. Ichimura, and H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications”, IEICE Trans. E 74, 1692 (1991).

Itoh, T.

K. I. Aoyama, K. Nakagawa, and T. Itoh, “Optical-time domain reflectrometry in a single-mode fiber”, IEEE J. Quant. Electr. 17, 862 (1981).
[Crossref]

Jakobsson, A.

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering”, IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[Crossref] [PubMed]

Jarlman, O.

Johansson, J.

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

Karlsson, C. J.

Kaufmann, K.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Leigh, J.S.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Levy, W.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Lewander, M.

Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
[Crossref]

Lundberg, H.

Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
[Crossref]

Miyake, H.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Nakagawa, K.

K. I. Aoyama, K. Nakagawa, and T. Itoh, “Optical-time domain reflectrometry in a single-mode fiber”, IEEE J. Quant. Electr. 17, 862 (1981).
[Crossref]

Nazarathy, M.

W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser”, IEEE Photonics Technol. Lett.,  2, 902 (1990).
[Crossref]

Newton, S. A.

W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser”, IEEE Photonics Technol. Lett.,  2, 902 (1990).
[Crossref]

Nilsson, G. E.

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering”, IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[Crossref] [PubMed]

Nioka, S.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Olsson, F. Å. A.

Persson, A.

Pifferi, A.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Smith, D.S.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Sorin, W. V.

W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser”, IEEE Photonics Technol. Lett.,  2, 902 (1990).
[Crossref]

Spinelli, L.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Svanberg, K.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy”, J. Biomed. Opt. 12, 014022 (2007).
[Crossref] [PubMed]

Svanberg, S.

Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
[Crossref]

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, “Multispectral tissue characterization using time-resolved detection of diffusely scattered white light”, Opt. Lett. 18, 1697 (1993).
[Crossref] [PubMed]

R. Berg, S. Andersson-Engels, and S. Svanberg, “Time-resolved transillumination imaging”, Optical Tomography, SPIE IS 11, 397 (1993).

S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics”, Opt. Lett. 15, 1179 (1990).
[Crossref] [PubMed]

Svensson, T.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy”, J. Biomed. Opt. 12, 014022 (2007).
[Crossref] [PubMed]

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

Swanson, E. A.

Taroni, A.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Toida, M.

M. Toida, T. Ichimura, and H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications”, IEICE Trans. E 74, 1692 (1991).

Torricelli, A.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Uttam, D.

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique”, J. Lightwave Technol. LT- 3, 971 (1985).
[Crossref]

Wårdell, K.

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering”, IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[Crossref] [PubMed]

Yoshioka, H.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Young, M.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

Z.G. Guan, M. Lewander, R. Grönlund, H. Lundberg, and S. Svanberg, “Gas analysis in remote scattering targets using LIDAR techniques”, Appl. Phys. B 93, 657 (2008).
[Crossref]

IEEE J. Quant. Electr. (1)

K. I. Aoyama, K. Nakagawa, and T. Itoh, “Optical-time domain reflectrometry in a single-mode fiber”, IEEE J. Quant. Electr. 17, 862 (1981).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser”, IEEE Photonics Technol. Lett.,  2, 902 (1990).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering”, IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[Crossref] [PubMed]

IEICE Trans. E (1)

M. Toida, T. Ichimura, and H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications”, IEICE Trans. E 74, 1692 (1991).

J. Biomed. Opt. (1)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy”, J. Biomed. Opt. 12, 014022 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. LT (1)

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique”, J. Lightwave Technol. LT- 3, 971 (1985).
[Crossref]

Opt. Exp. (1)

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre”, Opt. Exp. 12, 4103 (2004).
[Crossref]

Opt. Lett. (3)

Optical Tomography, SPIE IS (1)

R. Berg, S. Andersson-Engels, and S. Svanberg, “Time-resolved transillumination imaging”, Optical Tomography, SPIE IS 11, 397 (1993).

Phys. Med. Biol. (1)

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu“Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions”, Phys. Med. Biol. 502469 (2005)
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of time-resolved and - unresolved measurements of deoxyhemoglobin in the brain”, Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[Crossref] [PubMed]

Other (1)

T. Fujii and T. Fukuchi (eds), Laser Remote Sensing (CRC Press, Boca Raton2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the technique presented; (b) Principle of analyzing photon propagation in the frequency domain.

Fig. 2.
Fig. 2.

Spectral responses for different samples (a) white paper, (b) tissue phantom, and (c) polystyrene foam (transmission mode). Curves are normalized by the maximum values.

Fig. 3.
Fig. 3.

Spectral responses corresponding to different thickness (l) of polystyrene foam (transmission mode). Curves are normalized by the maximum values.

Fig. 4.
Fig. 4.

Spectral responses when the gap (d) between the illuminating and observation points is set to different values (reflection mode). Gray curves are normalized by the maximum values. Dark smoothed curves are obtained by applying a sliding average over 100 Hz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eref = Aref exp (reft),
Esig = iAsigiexp{j[(ωrefS·τi)·t+ϕ(τi)]}.
I = DC + iArefAsigicos[S·τi·tϕ(τi)]+ijAsigiAsigjcos[S·(τiτj)·t+ϕ(τj)ϕ(τi)].

Metrics