Abstract

A novel technique for studying photon propagation in scattering media is proposed and demonstrated, as is believed, for the first time. Photons propagating through the medium, from a frequency-ramped single-mode diode laser, meet a reference beam from the same source, at a common detector, and beat frequencies corresponding to various temporal delays are observed by heterodyne techniques. Fourier transformation directly yields the temporal dispersion curve. Proof-of-principle experiments on polystyrene foam and a tissue phantom suggest, that the new method, when fully developed, may favorably compete with the more complex time-correlated single-photon counting (TCSPC) and the phase-shift methods, now much employed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
    [CrossRef] [PubMed]
  2. S. Andersson-Engels, R. Berg, S. Svanberg and O. Jarlman, "Time-resolved transillumination for medical diagnostics", Opt. Lett. 15, 1179 (1990).
    [CrossRef] [PubMed]
  3. R. Berg, S. Andersson-Engels and S. Svanberg, "Time-resolved transillumination imaging", Optical Tomography, SPIE IS 11, 397 (1993).
  4. A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
    [CrossRef] [PubMed]
  5. T. Svensson, S. Andersson-Engels, M. Einarsdóttír and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy", J. Biomed. Opt. 12, 014022 (2007).
    [CrossRef] [PubMed]
  6. S. Andersson-Engels, R. Berg, A. Persson and S. Svanberg, "Multispectral tissue characterization using time-resolved detection of diffusely scattered white light", Opt. Lett. 18, 1697 (1993).
    [CrossRef] [PubMed]
  7. Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
    [CrossRef]
  8. T. Fujii and T. Fukuchi (eds), Laser Remote Sensing (CRC Press, Boca Raton 2005).
  9. K. I. Aoyama, K. Nakagawa, and T. Itoh, "Optical-time domain reflectrometry in a single-mode fiber", IEEE J. Quant. Electr. 17, 862 (1981).
    [CrossRef]
  10. Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
    [CrossRef]
  11. M. Toida, T. Ichimura and H. Inaba, "The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications", IEICE Trans. E 74, 1692 (1991).
  12. D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique", J. Lightwave Technol. LT- 3, 971 (1985).
    [CrossRef]
  13. W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser", IEEE Photonics Technol. Lett.,  2, 902 (1990).
    [CrossRef]
  14. C. J. Karlsson and F. Å. A. Olsson, "Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance", Appl. Opt. 38, 3376 (1999).
    [CrossRef]
  15. S. R. Chinn and E. A. Swanson, "Optical coherence tomography using a frequency-tunable optical source", Opt. Lett. 22, 340 (1997).
    [CrossRef] [PubMed]
  16. K. Wårdell, A. Jakobsson and G. E. Nilsson, "Laser Doppler perfusion imaging by dynamic light scattering", IEEE Trans. Biomed. Eng.,  40, 309 (1993).
    [CrossRef] [PubMed]

2008 (1)

Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
[CrossRef]

2007 (1)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy", J. Biomed. Opt. 12, 014022 (2007).
[CrossRef] [PubMed]

2005 (1)

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

2004 (1)

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

1999 (1)

1997 (1)

1993 (3)

K. Wårdell, A. Jakobsson and G. E. Nilsson, "Laser Doppler perfusion imaging by dynamic light scattering", IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, A. Persson and S. Svanberg, "Multispectral tissue characterization using time-resolved detection of diffusely scattered white light", Opt. Lett. 18, 1697 (1993).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels and S. Svanberg, "Time-resolved transillumination imaging", Optical Tomography, SPIE IS 11, 397 (1993).

1991 (1)

M. Toida, T. Ichimura and H. Inaba, "The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications", IEICE Trans. E 74, 1692 (1991).

1990 (2)

W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser", IEEE Photonics Technol. Lett.,  2, 902 (1990).
[CrossRef]

S. Andersson-Engels, R. Berg, S. Svanberg and O. Jarlman, "Time-resolved transillumination for medical diagnostics", Opt. Lett. 15, 1179 (1990).
[CrossRef] [PubMed]

1988 (1)

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

1985 (1)

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique", J. Lightwave Technol. LT- 3, 971 (1985).
[CrossRef]

1981 (1)

K. I. Aoyama, K. Nakagawa, and T. Itoh, "Optical-time domain reflectrometry in a single-mode fiber", IEEE J. Quant. Electr. 17, 862 (1981).
[CrossRef]

Abrahamsson, Ch.

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

Andersson-Engels, S.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy", J. Biomed. Opt. 12, 014022 (2007).
[CrossRef] [PubMed]

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

S. Andersson-Engels, R. Berg, A. Persson and S. Svanberg, "Multispectral tissue characterization using time-resolved detection of diffusely scattered white light", Opt. Lett. 18, 1697 (1993).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels and S. Svanberg, "Time-resolved transillumination imaging", Optical Tomography, SPIE IS 11, 397 (1993).

S. Andersson-Engels, R. Berg, S. Svanberg and O. Jarlman, "Time-resolved transillumination for medical diagnostics", Opt. Lett. 15, 1179 (1990).
[CrossRef] [PubMed]

Aoyama, K. I.

K. I. Aoyama, K. Nakagawa, and T. Itoh, "Optical-time domain reflectrometry in a single-mode fiber", IEEE J. Quant. Electr. 17, 862 (1981).
[CrossRef]

Arpaia, F.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Berg, R.

Boretsky, R.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Chance, B.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Chinn, S. R.

Cohen, P.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Cubeddu, R.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Culshaw, B.

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique", J. Lightwave Technol. LT- 3, 971 (1985).
[CrossRef]

Danesini, G.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Donald, D. K.

W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser", IEEE Photonics Technol. Lett.,  2, 902 (1990).
[CrossRef]

Einarsdóttír, M.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy", J. Biomed. Opt. 12, 014022 (2007).
[CrossRef] [PubMed]

Finander, M.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Folestad, S.

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

Greenfeld, R.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Grönlund, R.

Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
[CrossRef]

Guan, Z. G.

Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
[CrossRef]

Ichimura, T.

M. Toida, T. Ichimura and H. Inaba, "The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications", IEICE Trans. E 74, 1692 (1991).

Inaba, H.

M. Toida, T. Ichimura and H. Inaba, "The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications", IEICE Trans. E 74, 1692 (1991).

Itoh, T.

K. I. Aoyama, K. Nakagawa, and T. Itoh, "Optical-time domain reflectrometry in a single-mode fiber", IEEE J. Quant. Electr. 17, 862 (1981).
[CrossRef]

Jakobsson, A.

K. Wårdell, A. Jakobsson and G. E. Nilsson, "Laser Doppler perfusion imaging by dynamic light scattering", IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[CrossRef] [PubMed]

Jarlman, O.

Johansson, J.

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

Karlsson, C. J.

Kaufmann, K.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Leigh, J.S.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Levy, W.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Lewander, M.

Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
[CrossRef]

Lundberg, H.

Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
[CrossRef]

Miyake, H.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Nakagawa, K.

K. I. Aoyama, K. Nakagawa, and T. Itoh, "Optical-time domain reflectrometry in a single-mode fiber", IEEE J. Quant. Electr. 17, 862 (1981).
[CrossRef]

Nazarathy, M.

W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser", IEEE Photonics Technol. Lett.,  2, 902 (1990).
[CrossRef]

Newton, S. A.

W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser", IEEE Photonics Technol. Lett.,  2, 902 (1990).
[CrossRef]

Nilsson, G. E.

K. Wårdell, A. Jakobsson and G. E. Nilsson, "Laser Doppler perfusion imaging by dynamic light scattering", IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Olsson, F. Å. A.

Persson, A.

Pifferi, A.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Smith, D.S.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Sorin, W. V.

W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser", IEEE Photonics Technol. Lett.,  2, 902 (1990).
[CrossRef]

Spinelli, L.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Svanberg, K.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy", J. Biomed. Opt. 12, 014022 (2007).
[CrossRef] [PubMed]

Svanberg, S.

Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
[CrossRef]

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

S. Andersson-Engels, R. Berg, A. Persson and S. Svanberg, "Multispectral tissue characterization using time-resolved detection of diffusely scattered white light", Opt. Lett. 18, 1697 (1993).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels and S. Svanberg, "Time-resolved transillumination imaging", Optical Tomography, SPIE IS 11, 397 (1993).

S. Andersson-Engels, R. Berg, S. Svanberg and O. Jarlman, "Time-resolved transillumination for medical diagnostics", Opt. Lett. 15, 1179 (1990).
[CrossRef] [PubMed]

Svensson, T.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy", J. Biomed. Opt. 12, 014022 (2007).
[CrossRef] [PubMed]

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

Swanson, E. A.

Taroni, A.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Toida, M.

M. Toida, T. Ichimura and H. Inaba, "The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications", IEICE Trans. E 74, 1692 (1991).

Torricelli, A.

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Uttam, D.

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique", J. Lightwave Technol. LT- 3, 971 (1985).
[CrossRef]

Wårdell, K.

K. Wårdell, A. Jakobsson and G. E. Nilsson, "Laser Doppler perfusion imaging by dynamic light scattering", IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[CrossRef] [PubMed]

Yoshioka, H.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Young, M.

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

Z. G. Guan, M. Lewander, R. Grönlund, H. Lundberg and S. Svanberg, "Gas analysis in remote scattering targets using LIDAR techniques", Appl. Phys. B 93, 657 (2008).
[CrossRef]

IEEE J. Quant. Electr. (1)

K. I. Aoyama, K. Nakagawa, and T. Itoh, "Optical-time domain reflectrometry in a single-mode fiber", IEEE J. Quant. Electr. 17, 862 (1981).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser", IEEE Photonics Technol. Lett.,  2, 902 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. Wårdell, A. Jakobsson and G. E. Nilsson, "Laser Doppler perfusion imaging by dynamic light scattering", IEEE Trans. Biomed. Eng.,  40, 309 (1993).
[CrossRef] [PubMed]

IEICE Trans. E (1)

M. Toida, T. Ichimura and H. Inaba, "The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications", IEICE Trans. E 74, 1692 (1991).

J. Biomed. Opt. (1)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy", J. Biomed. Opt. 12, 014022 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique", J. Lightwave Technol. LT- 3, 971 (1985).
[CrossRef]

Opt. Exp. (1)

Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre", Opt. Exp. 12, 4103 (2004).
[CrossRef]

Opt. Lett. (3)

Optical Tomography, SPIE IS (1)

R. Berg, S. Andersson-Engels and S. Svanberg, "Time-resolved transillumination imaging", Optical Tomography, SPIE IS 11, 397 (1993).

Phys. Med. Biol. (1)

A. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions", Phys. Med. Biol. 50, 2469 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, "Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain", Proc. Natl. Acad. Sci. USA 85, 4971 (1988).
[CrossRef] [PubMed]

Other (1)

T. Fujii and T. Fukuchi (eds), Laser Remote Sensing (CRC Press, Boca Raton 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the technique presented; (b) Principle of analyzing photon propagation in the frequency domain.

Fig. 2.
Fig. 2.

Spectral responses for different samples (a) white paper, (b) tissue phantom, and (c) polystyrene foam (transmission mode). Curves are normalized by the maximum values.

Fig. 3.
Fig. 3.

Spectral responses corresponding to different thickness (l) of polystyrene foam (transmission mode). Curves are normalized by the maximum values.

Fig. 4.
Fig. 4.

Spectral responses when the gap (d) between the illuminating and observation points is set to different values (reflection mode). Gray curves are normalized by the maximum values. Dark smoothed curves are obtained by applying a sliding average over 100 Hz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eref = Aref exp (reft),
Esig = iAsigiexp{j[(ωrefS·τi)·t+ϕ(τi)]}.
I = DC + iArefAsigicos[S·τi·tϕ(τi)]+ijAsigiAsigjcos[S·(τiτj)·t+ϕ(τj)ϕ(τi)].

Metrics