Abstract

The phase shifted vertical side wall gratings are designed and numerically simulated on a submicron SOI waveguide to obtain the performance characteristics needed for an integrated refractive index sensor. The gratings are designed to obtain narrow band width, high transmittivity and sharp line shape in the resonant transmission so that the sensor sensitivity can be improved. The proposed sensor is easy to fabricate and will provide a linear response over a wide wavelength range with a compact structure dimension which is suitable for label free biosensing applications. The detection limit of the sensor is investigated through both wavelength shift and intensity measurement method and the performance parameter is compared with other silicon based structures like Mach-Zehnder interferometer, ring resonator and surface corrugated Bragg grating.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Lechuga, “Optical biosensors,” in Biosensors and Modern Biospecific Analytical Techniques. L. Gorton, Ed., vol. 44 of Comprehensive Analytical Chemistry Series (Elsevier Science BV, Amsterdam, The Netherlands.2005). pp. 209–250.
  2. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [CrossRef]
  3. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, “Integrated-optical directional coupler biosensor,” Opt. Lett. 21(8), 618–620 (1996).
    [CrossRef] [PubMed]
  4. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [CrossRef]
  5. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [CrossRef]
  6. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  7. P. P. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14(16), 7063–7072 (2006).
    [CrossRef] [PubMed]
  8. F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [CrossRef] [PubMed]
  9. V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg Grating Sensors Based on Sub micrometer Optical Rib Waveguides in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
    [CrossRef]
  10. W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
    [CrossRef]
  11. A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
    [CrossRef]
  12. L. Zhu, Y. Huang, W. Green, and A. Yariv, "Tunable transmission filters based on corrugated sidewall Bragg gratings in polymer waveguides," in the Proceeding of2005conference on Lasers and Electro-Optics, CLEO1, pp.282–284.
  13. H. C. Kim, K. Ikeda, and Y. Fainman, "Tunable transmission resonant filter and modulator with vertical gratings," J. Lightwave Technol. 25(5), 1147–1151 (2007).
    [CrossRef]
  14. The FDTD simulations were performed by OptiFDTD-7.Optiwave Corporation.Ottawa.ON.Canada.
  15. R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
    [CrossRef]
  16. M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
    [CrossRef]
  17. M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
    [CrossRef]
  18. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide–cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [CrossRef]
  19. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
    [CrossRef]
  20. Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
    [CrossRef] [PubMed]
  21. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  22. W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R. M. de Ridder, “Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings,” Opt. Express 15(4), 1851–1870 (2007).
    [CrossRef] [PubMed]

2009 (1)

A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
[CrossRef]

2008 (3)

2007 (4)

2006 (4)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

P. P. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14(16), 7063–7072 (2006).
[CrossRef] [PubMed]

2005 (1)

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

2003 (2)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide–cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

2001 (1)

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

1996 (1)

1986 (1)

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
[CrossRef]

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Aitchison, J. S.

A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
[CrossRef]

Aldridge, J. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Alferness, R. C.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
[CrossRef]

Baets, R.

Bartolozzi, I.

Bassi, P.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Bellanca, G.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Benisty, H.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

Bernaud, A.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

Bienstman, P.

Buhl, L. L.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
[CrossRef]

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Cassagne, D.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

Chbouki, N.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Chong, H.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Chu, S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

D’Amico, G.

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg Grating Sensors Based on Sub micrometer Optical Rib Waveguides in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[CrossRef]

De La Rue, R. M.

A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
[CrossRef]

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

De Leonardis, F.

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg Grating Sensors Based on Sub micrometer Optical Rib Waveguides in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[CrossRef]

de Ridder, R. M.

W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R. M. de Ridder, “Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings,” Opt. Express 15(4), 1851–1870 (2007).
[CrossRef] [PubMed]

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

De Vos, K.

Debackere, P. P. P.

Dekker, R.

Dell’Olio, F.

Desai, T. A. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Divino, M. D.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
[CrossRef]

Dominguez, C.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Dou, J.

A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
[CrossRef]

Driessen, A.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

Fainman, Y.

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide–cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

Fan, X.

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

Gaddam, V.

Gill, D.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Gnan, M.

A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
[CrossRef]

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Goldberg, B. B.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

Harris, R. D.

Hoekstra, H. J. W. M.

W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R. M. de Ridder, “Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings,” Opt. Express 15(4), 1851–1870 (2007).
[CrossRef] [PubMed]

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

Hopman, W. C. L.

W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R. M. de Ridder, “Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings,” Opt. Express 15(4), 1851–1870 (2007).
[CrossRef] [PubMed]

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

Hryniewicz, J.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Ikeda, K.

Jouanin, C.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

Joyner, C. H.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
[CrossRef]

Jugessur, A. S.

A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
[CrossRef]

Kim, H. C.

King, O.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Krauss, T. F.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

Lambeck, P. V.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

Lechuga, L. M.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Little, B. E.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Loiacono, R.

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg Grating Sensors Based on Sub micrometer Optical Rib Waveguides in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[CrossRef]

Luff, B. J.

Martyak, M. J. R.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
[CrossRef]

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Passaro, V. M.

Passaro, V. M. N.

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg Grating Sensors Based on Sub micrometer Optical Rib Waveguides in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[CrossRef]

Popat, K. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Pottier, P.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Rattier, M.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

Rue, R. M. D. L.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Schacht, E.

Scheerlinck, S.

Schiffrin, D. J.

Sepulveda, B.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Smith, C. J. M.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

Unlu, M. S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Van, V.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

van Lith, J.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

Washburn, M. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Weisbuch, C.

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

White, I. M.

Wilkinson, J. S.

Wilson, R.

Xiao, Y. F.

Yalcin, A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Yang, L.

Yudistira, D.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

Zhuang, L.

Appl. Phys. Lett. (3)

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49(3), 125 (1986).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide–cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Rattier, H. Benisty, C. J. M. Smith, A. Bernaud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37(2), 237–243 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. A. Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-One-Dimensional Photonic Crystal as a Compact Building-Block for Refractometric Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 11(1), 11–16 (2005).
[CrossRef]

IEEE Sens. J. (1)

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg Grating Sensors Based on Sub micrometer Optical Rib Waveguides in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Microelectron. Eng. (1)

A. S. Jugessur, J. Dou, J. S. Aitchison, R. M. De La Rue, and M. Gnan, “A photonic nano-Bragg grating device integrated with micro fluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006).
[CrossRef]

Other (3)

L. M. Lechuga, “Optical biosensors,” in Biosensors and Modern Biospecific Analytical Techniques. L. Gorton, Ed., vol. 44 of Comprehensive Analytical Chemistry Series (Elsevier Science BV, Amsterdam, The Netherlands.2005). pp. 209–250.

L. Zhu, Y. Huang, W. Green, and A. Yariv, "Tunable transmission filters based on corrugated sidewall Bragg gratings in polymer waveguides," in the Proceeding of2005conference on Lasers and Electro-Optics, CLEO1, pp.282–284.

The FDTD simulations were performed by OptiFDTD-7.Optiwave Corporation.Ottawa.ON.Canada.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) schematic diagram(top side view) of phase shifted vertical side wall grating (b) Field intensity distribution (X-Z plane view) (c) Normalised reflection/transmission spectrum of the grating.(Inset showing the magnified central region).

Fig. 2
Fig. 2

(a) superposed transmission spectra for different phase shift lengths (Inset showing the magnified central region). Resonant wavelength versus (b) phase shift length and (c) effective refractive index of the grating.

Fig. 3
Fig. 3

Variation in 3dB band width and loss inside the cavity with respect to (a) grating duty cycle (b) grating depth (c) transmittivity spectrum for varying grating length Lout (in units of grating period Λ) (d) graph showing the variation in band width and transmittivity with grating length Lout.

Fig. 4
Fig. 4

The transmission spectrum of a phase shifted grating with grating depth 150 nm, for various grating length Lout.

Fig. 5
Fig. 5

(a) Schematic diagram of vertical side wall grating with two phase shifts (b) superimposed transmission specrum of a single and a two phase shifted grating.

Fig. 6
Fig. 6

(a) The schematic diagram of the integrated biosensor based on phase shifted vertical side wall grating. (b) Spectral response of two phase shifted grating for different channel fluid refractive indices. (c) Variation in effective index of the grating with respect to channel fluid refractive index (n Clad) (d) Normalized transmission of the resonant peak with respect to change in the fluid refractive index

Tables (1)

Tables Icon

Table 1 Parameter comparison of some of the silicon based sensor structures.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

lgn1+lwn2=mλB2
1Q=1QI+1QL
QI(π4KΛ)exp(2KL)
QL=(π2αΛ)
T=(QQI)2
Δnmin=m2Λ(neffnclad)1Δλmin
Δnmin=nCladλBλPΔPmin
S=1PPn

Metrics