Abstract

A new experimental model based on plastic (Filofocon A) artificial eyes was used to study the ablation profiles and the outcomes of three state-of-the-art refractive surgery excimer lasers provided with narrow-beam flying spot and optimized algorithms (Ladarvision 4000, Alcon; Technolas 217 Z100, Bausch&Lomb; Allegretto wave Eye-Q, Wavelight). The 3-D ablation patterns produced by myopic laser corrections (-9, -6 and -3 D) on flat and spherical surfaces of Filofocon A were measured using high resolution optical profilometry. We found significant differences across lasers in the shape and depth of the ablation patterns. A comparison of the ablation patterns on flat and on spherical surfaces provided a measurement of the laser efficiency losses from the center to the periphery at each point of the spherical plastic corneas. This effect also varied across lasers, depending on their fluence (120–400 mJ/cm2). Estimates of the post-operative corneal shapes were obtained from the measurement on Filofocon A and plastic-corneal tissue correction factors. The predicted post-operative corneal ablation shape, ablated volume, asphericity and spherical aberration varied across lasers, as well as the relative contribution of ablation pattern designs and efficiency losses to the increased asphericity. Although the results show that the algorithms have been optimized to reduce the induction of spherical aberration, they would still benefit from the application of correction factors for efficiency effects derived from a systematic approach using experimental plastic models. These models have proved useful (1) to assess the outcomes of different lasers or ablation algorithms, (2) for precise calibration and testing of the lasers, and (3) to calculate experimental correction factors for efficiency effects.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
    [CrossRef] [PubMed]
  2. T. Kohnen, "Classification of excimer laser profiles," J. Cataract. Refract. Surg. 32, 543-544 (2006).
    [CrossRef] [PubMed]
  3. T. Kohnen, "Reshaping the cornea: Which laser profiles should we use?," J. Cataract. Refract. Surg. 34, 1225-1225 (2008).
    [CrossRef] [PubMed]
  4. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
    [PubMed]
  5. S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001).
    [PubMed]
  6. M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes.," J. Refract. Surg. 16, 116-121 (2000).
    [PubMed]
  7. T. Kohnen, C. Kuhne, and J. Buhren, "The future role of wavefront-guided excimer ablation," Graefes Arch. Clin. Exp. Ophthalmol. 245, 189-194 (2007).
    [CrossRef]
  8. P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008).
    [CrossRef] [PubMed]
  9. M. V. Netto, W. Dupps, and S. E. Wilson, "Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation," Am. J. Ophthalmol. 141, 360-368 (2006).
    [CrossRef] [PubMed]
  10. J. L. Alio, and R. Montes-Mico, "Wavefront-guided versus standard LASIK enhancement for residual refractive errors," Ophthalmology 113, 191-197 (2006).
    [CrossRef]
  11. A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009).
    [CrossRef]
  12. W. J. Dupps, and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
    [CrossRef] [PubMed]
  13. M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, S584-S587. (2001).
    [PubMed]
  14. S. Marcos, D. Cano, and S. Barbero, "Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).
  15. R. G. Anera, J. R. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
    [CrossRef] [PubMed]
  16. J. R. Jimenez, R. G. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
    [CrossRef]
  17. D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
    [CrossRef]
  18. D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
    [PubMed]
  19. S. Arba-Mosquera, and D. de Ortueta, "Geometrical analysis of the loss of ablation efficiency at non-normal incidence," Opt. Express 16, 3877-3895 (2008).
    [CrossRef] [PubMed]
  20. Y. Kwon, M. Choi, and S. Bott, "Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam," Opt. Express 16, 11808-11821 (2008).
    [CrossRef] [PubMed]
  21. J. R. Jimenez, R. G. Anera, L. J. del Barco, E. Hita, and F. Perez-Ocon, "Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams," Opt. Express 13, 336-343 (2005).
    [CrossRef] [PubMed]
  22. J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004).
    [CrossRef] [PubMed]
  23. J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
    [PubMed]
  24. C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).
  25. A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
    [CrossRef]
  26. S. Marcos, C. Dorronsoro, and D. Cano, "Spherical aberration prevention method in e.g. laser refractive surgery system," (Patent WO 2005/122873 A1, 2005).
  27. C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
    [CrossRef] [PubMed]
  28. J. Buehren, "The effect of the asphericity of myopic laser ablation profiles on the induction of wavefront aberrations," in Wavefront Congress (Alicante, Spain, 2009).
  29. ANSI Z80.11 Laser Systems for Corneal Reshaping (American National Standard Institute, 2007).
  30. B. Drum, "Evaluating the Safety and Effectiveness of "Aberration-Free" Ophthalmic Refractive Surgery," in 9th Annual FDA Science Forum (Washington, DC, 2003).
  31. B. Drum, "Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature," in 11th annual FDA Science Forum (Washington, DC, 2005).
  32. C. Dorronsoro, J. Siegel, L. Remon, and S. Marcos, "Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery," Opt. Express 16, 20955-20967 (2008).
    [CrossRef] [PubMed]
  33. L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004).
    [PubMed]
  34. R. Artigas, F. Laguarta, and C. Cadevall, "Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales," O. Wolfgang, and T. Mitsuo, eds. (SPIE, Strasbourg, France, 2004), pp. 166-174.
  35. S. H. Goods, R. M. Watson, and M. Yi, "Thermal Expansion and Hydration Behavior of PMMA Molding Materials for LIGA Applications," (Sandia National Laboratories, Albuquerque, New Mexico, 2003).
  36. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002).
    [PubMed]
  37. B. T. Fisher, and D. W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007).
    [CrossRef]
  38. J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
    [PubMed]

2008 (5)

2007 (2)

B. T. Fisher, and D. W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007).
[CrossRef]

T. Kohnen, C. Kuhne, and J. Buhren, "The future role of wavefront-guided excimer ablation," Graefes Arch. Clin. Exp. Ophthalmol. 245, 189-194 (2007).
[CrossRef]

2006 (5)

C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

M. V. Netto, W. Dupps, and S. E. Wilson, "Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation," Am. J. Ophthalmol. 141, 360-368 (2006).
[CrossRef] [PubMed]

J. L. Alio, and R. Montes-Mico, "Wavefront-guided versus standard LASIK enhancement for residual refractive errors," Ophthalmology 113, 191-197 (2006).
[CrossRef]

W. J. Dupps, and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

T. Kohnen, "Classification of excimer laser profiles," J. Cataract. Refract. Surg. 32, 543-544 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004).
[CrossRef] [PubMed]

L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004).
[PubMed]

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

2003 (3)

S. Marcos, D. Cano, and S. Barbero, "Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

R. G. Anera, J. R. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002).
[PubMed]

J. R. Jimenez, R. G. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
[CrossRef]

2001 (5)

M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
[CrossRef] [PubMed]

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, S584-S587. (2001).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001).
[PubMed]

2000 (1)

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes.," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

1997 (1)

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
[PubMed]

1996 (2)

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

Alio, J. L.

J. L. Alio, and R. Montes-Mico, "Wavefront-guided versus standard LASIK enhancement for residual refractive errors," Ophthalmology 113, 191-197 (2006).
[CrossRef]

Anera, R. G.

Arba-Mosquera, S.

Azar, D.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

Azar, D. T.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Barbero, B.

L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004).
[PubMed]

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001).
[PubMed]

Barbero, S.

S. Marcos, D. Cano, and S. Barbero, "Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

Basuthkar, S.

P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008).
[CrossRef] [PubMed]

Birngruber, R.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
[PubMed]

Bott, S.

Buhren, J.

T. Kohnen, C. Kuhne, and J. Buhren, "The future role of wavefront-guided excimer ablation," Graefes Arch. Clin. Exp. Ophthalmol. 245, 189-194 (2007).
[CrossRef]

Cambier, J. L.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Cano, D.

C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

Choi, M.

de Ortueta, D.

del Barco, L. J.

Dorronsoro, C.

Dupps, W.

M. V. Netto, W. Dupps, and S. E. Wilson, "Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation," Am. J. Ophthalmol. 141, 360-368 (2006).
[CrossRef] [PubMed]

Dupps, W. J.

W. J. Dupps, and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

Eldine, M. S.

M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
[CrossRef] [PubMed]

Ferreri, G.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Ferreri, P.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Fisher, B. T.

Gatinel, D.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

Gottsch, J. D.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Hahn, D. W.

Hall, D.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Hita, E.

Hoang-Xuan, T.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

Hohla, K.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
[PubMed]

Hutz, W.

M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
[CrossRef] [PubMed]

Jimenez, J. R.

Jimenez del Barco, L.

Jiménez del Barco, L.

J. R. Jimenez, R. G. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
[CrossRef]

Joseph, R.

P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008).
[CrossRef] [PubMed]

Kaemmerer, M.

M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes.," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Kemner, J.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

Kirsch, M.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Kittelmann, O.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Kohnen, T.

T. Kohnen, "Reshaping the cornea: Which laser profiles should we use?," J. Cataract. Refract. Surg. 34, 1225-1225 (2008).
[CrossRef] [PubMed]

T. Kohnen, C. Kuhne, and J. Buhren, "The future role of wavefront-guided excimer ablation," Graefes Arch. Clin. Exp. Ophthalmol. 245, 189-194 (2007).
[CrossRef]

T. Kohnen, "Classification of excimer laser profiles," J. Cataract. Refract. Surg. 32, 543-544 (2006).
[CrossRef] [PubMed]

Korn, G.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Kuhne, C.

T. Kohnen, C. Kuhne, and J. Buhren, "The future role of wavefront-guided excimer ablation," Graefes Arch. Clin. Exp. Ophthalmol. 245, 189-194 (2007).
[CrossRef]

Kwon, Y.

Lenzner, M.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Llorente, L.

L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001).
[PubMed]

Marcos, S.

C. Dorronsoro, J. Siegel, L. Remon, and S. Marcos, "Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery," Opt. Express 16, 20955-20967 (2008).
[CrossRef] [PubMed]

C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004).
[PubMed]

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002).
[PubMed]

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009).
[CrossRef]

Merayo, J.

C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004).
[PubMed]

Merayo-Lloves, J.

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002).
[PubMed]

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009).
[CrossRef]

Montes-Mico, R.

J. L. Alio, and R. Montes-Mico, "Wavefront-guided versus standard LASIK enhancement for residual refractive errors," Ophthalmology 113, 191-197 (2006).
[CrossRef]

Moreno-Barriuso, E.

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

Mrochen, M.

P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008).
[CrossRef] [PubMed]

M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
[CrossRef] [PubMed]

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, S584-S587. (2001).
[PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes.," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Navarro, R.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

Netto, M. V.

M. V. Netto, W. Dupps, and S. E. Wilson, "Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation," Am. J. Ophthalmol. 141, 360-368 (2006).
[CrossRef] [PubMed]

Noack, J.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
[PubMed]

Odonnell, C. B.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

Odonnell, F. E.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

Padmanabhan, P.

P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008).
[CrossRef] [PubMed]

Perez-Escudero, A.

A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009).
[CrossRef]

Perez-Ocon, F.

Remon, L.

C. Dorronsoro, J. Siegel, L. Remon, and S. Marcos, "Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery," Opt. Express 16, 20955-20967 (2008).
[CrossRef] [PubMed]

A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009).
[CrossRef]

Rencs, E. V.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Roszkowska, A. M.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Sawides, L.

A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009).
[CrossRef]

Seiler, T.

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, S584-S587. (2001).
[PubMed]

M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes.," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Siegel, J.

Stark, W. J.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Tonnies, R.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
[PubMed]

Viswanathan, D.

P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008).
[CrossRef] [PubMed]

Vogel, A.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
[PubMed]

Wilson, S. E.

M. V. Netto, W. Dupps, and S. E. Wilson, "Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation," Am. J. Ophthalmol. 141, 360-368 (2006).
[CrossRef] [PubMed]

W. J. Dupps, and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

Zatonski, R.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

Am. J. Ophthalmol. (1)

M. V. Netto, W. Dupps, and S. E. Wilson, "Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation," Am. J. Ophthalmol. 141, 360-368 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. R. Jimenez, R. G. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
[CrossRef]

Exp. Eye Res. (1)

W. J. Dupps, and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

T. Kohnen, C. Kuhne, and J. Buhren, "The future role of wavefront-guided excimer ablation," Graefes Arch. Clin. Exp. Ophthalmol. 245, 189-194 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (3)

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Vis. Sci. 42, 3349-3356 (2001).
[PubMed]

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

J. Cataract. Refract. Surg. (5)

M. Mrochen, M. S. Eldine, M. Kaemmerer, T. Seiler, and W. Hutz, "Improvement in photorefractive corneal laser surgery results using an active eye-tracking system," J. Cataract. Refract. Surg. 27, 1000-1006 (2001).
[CrossRef] [PubMed]

T. Kohnen, "Classification of excimer laser profiles," J. Cataract. Refract. Surg. 32, 543-544 (2006).
[CrossRef] [PubMed]

T. Kohnen, "Reshaping the cornea: Which laser profiles should we use?," J. Cataract. Refract. Surg. 34, 1225-1225 (2008).
[CrossRef] [PubMed]

P. Padmanabhan, M. Mrochen, S. Basuthkar, D. Viswanathan, and R. Joseph, "Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study," J. Cataract. Refract. Surg. 34, 389-397 (2008).
[CrossRef] [PubMed]

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri, and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract. Refract. Surg. 30, 2536-2542 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

J. Refract. Surg. (7)

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, S584-S587. (2001).
[PubMed]

S. Marcos, D. Cano, and S. Barbero, "Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes.," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar, and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

L. Llorente, B. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia.," J. Refract. Surg. 20, 203-216 (2004).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002).
[PubMed]

Ophthalmol. (1)

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmol. 104, 823-830 (1997).
[PubMed]

Ophthalmology (1)

J. L. Alio, and R. Montes-Mico, "Wavefront-guided versus standard LASIK enhancement for residual refractive errors," Ophthalmology 113, 191-197 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (8)

R. Artigas, F. Laguarta, and C. Cadevall, "Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales," O. Wolfgang, and T. Mitsuo, eds. (SPIE, Strasbourg, France, 2004), pp. 166-174.

S. H. Goods, R. M. Watson, and M. Yi, "Thermal Expansion and Hydration Behavior of PMMA Molding Materials for LIGA Applications," (Sandia National Laboratories, Albuquerque, New Mexico, 2003).

A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, "Minor influence of Myopic Laser In Situ Keratomileusis on the Posterior Corneal Surface," Invest. Ophthalmol. Vis. Sci. iovs.09-3411 (2009).
[CrossRef]

S. Marcos, C. Dorronsoro, and D. Cano, "Spherical aberration prevention method in e.g. laser refractive surgery system," (Patent WO 2005/122873 A1, 2005).

J. Buehren, "The effect of the asphericity of myopic laser ablation profiles on the induction of wavefront aberrations," in Wavefront Congress (Alicante, Spain, 2009).

ANSI Z80.11 Laser Systems for Corneal Reshaping (American National Standard Institute, 2007).

B. Drum, "Evaluating the Safety and Effectiveness of "Aberration-Free" Ophthalmic Refractive Surgery," in 9th Annual FDA Science Forum (Washington, DC, 2003).

B. Drum, "Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature," in 11th annual FDA Science Forum (Washington, DC, 2005).

Supplementary Material (1)

» Media 1: MOV (4019 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Artificial eyes of Filofocon A (flat and spherical). (b) Artificial eye support. The red line represents the fixation stimulus of the laser, while the green line represents the line of sight of the eye. Aligning means to make both axes coincident.

Fig. 2.
Fig. 2.

Single-frame excerpt from video recordings (Media 1) of a refractive surgery procedure in a flat plastic artificial cornea of Filofocon A.

Fig. 3.
Fig. 3.

(a) Examples of ablation patterns obtained from ablated flat and spherical surfaces for the three different lasers, and a correction of -9 diopters. (b) Horizontal sections of the ablation patterns on the flat surfaces (red lines), and other patterns obtained from different flat samples ablated on identical conditions (blue lines).

Fig. 4.
Fig. 4.

Ablation patterns for two of the lasers: Alcon (left side) and Bausch & Lomb (right side). All the measured points are shown in radial plots, both for flat and spherical ablated surfaces (for −9 D corrections on Filofocon A).

Fig. 5.
Fig. 5.

Measured ablation efficiency factor in Filofocon A for the Alcon ((a) and (b)) and for the Bausch & Lomb laser ((c) and (d)). (a) and (c) show the efficiency effects at each point. (b) and (d) are radial profiles of all the measured points (gray). The black squares are the angular averages at each radial position. The red line represents the theoretical ablation efficiency factor for the corresponding laser fluences (400 mJ/cm2 and 120 mJ/cm2 for the Alcon and Bausch and Lomb lasers, respectively).

Fig. 6.
Fig. 6.

Ablation profiles measured in Filofocon A flat surfaces (a) and predictions in corneal tissue (b) for flat and spherical surfaces.

Fig. 7.
Fig. 7.

Correction factor for efficiency effects in cornea estimated from the experimental measurements in Filofocon A. (a) Alcon. (b) Bausch & Lomb. c) Radial plots.

Fig. 8.
Fig. 8.

Post-operative asphericities from Filofocon A ablated spheres for the Alcon (diamonds) and Bausch & Lomb lasers (crosses). The asphericities found in a previous study [27] with a previous generation laser (Chiron Technolas 217c with PlanoScan) are also shown (squares).

Tables (2)

Tables Icon

Table 1. Laser platforms used in this study. (Nominal data from www.fda.gov)

Tables Icon

Table 3. Ablation depths, depth conversion factors, and ablated volumes in cornea, for a −9 D correction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K=dSPHdFLAT,
K=1+1lnF0FthlnR.
Kc=1+(lnRclnRp)(Kp1)(αcαp).

Metrics