D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

[PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

V. Lukic, V. A. Markel, and J. C. Schotland, “Optical tomography with structured illumination,” Opt. Lett. 34(7), 983–985 (2009).

[PubMed]

S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008).

[PubMed]

A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. Arridge, “Temporal propagation of spatial information in turbid media,” Opt. Lett. 33(23), 2836–2838 (2008).

[PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

J. C. Schotland and V. A. Markel, “Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation,” Inverse Problems and Imaging 1, 147–154 (2007).

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Radiative Transport Equation in Rotated Reference Frames,” J. Phys. A 39(1), 115–137 (2006).

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006).

[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).

[PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[PubMed]

G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Superresolution and corrections to the diffusion approximation in optical tomography,” Appl. Phys. Lett. 87(10), 101111 (2005).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).

[PubMed]

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 056616 (2004).

[PubMed]

V. A. Markel, “Modified spherical hamonics method for solving the radiative transport equation,” Waves Random Media 14(1), L13–L19 (2004).

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).

H. P. Tuan, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

H. P. Tuan, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

[PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).

[PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).

H. P. Tuan, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).

[PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.in press.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).

[PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.in press.

H. P. Tuan, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).

[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).

[PubMed]

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology 40(4), 501–510 (2003).

[PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006).

[PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006).

[PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

V. Lukic, V. A. Markel, and J. C. Schotland, “Optical tomography with structured illumination,” Opt. Lett. 34(7), 983–985 (2009).

[PubMed]

J. C. Schotland and V. A. Markel, “Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation,” Inverse Problems and Imaging 1, 147–154 (2007).

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Radiative Transport Equation in Rotated Reference Frames,” J. Phys. A 39(1), 115–137 (2006).

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).

G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Superresolution and corrections to the diffusion approximation in optical tomography,” Appl. Phys. Lett. 87(10), 101111 (2005).

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 056616 (2004).

[PubMed]

V. A. Markel, “Modified spherical hamonics method for solving the radiative transport equation,” Waves Random Media 14(1), L13–L19 (2004).

V. A. Markel, V. Mital, and J. C. Schotland, “Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition,” J. Opt. Soc. Am. A 20(5), 890–902 (2003).

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19(3), 558–566 (2002).

J. C. Schotland and V. A. Markel, “Inverse scattering with diffusing waves,” J. Opt. Soc. Am. A 18(11), 2767–2777 (2001).

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[PubMed]

S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008).

[PubMed]

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Radiative Transport Equation in Rotated Reference Frames,” J. Phys. A 39(1), 115–137 (2006).

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).

G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Superresolution and corrections to the diffusion approximation in optical tomography,” Appl. Phys. Lett. 87(10), 101111 (2005).

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006).

[PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[PubMed]

V. Lukic, V. A. Markel, and J. C. Schotland, “Optical tomography with structured illumination,” Opt. Lett. 34(7), 983–985 (2009).

[PubMed]

S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008).

[PubMed]

J. C. Schotland and V. A. Markel, “Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation,” Inverse Problems and Imaging 1, 147–154 (2007).

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Radiative Transport Equation in Rotated Reference Frames,” J. Phys. A 39(1), 115–137 (2006).

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).

G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Superresolution and corrections to the diffusion approximation in optical tomography,” Appl. Phys. Lett. 87(10), 101111 (2005).

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 056616 (2004).

[PubMed]

V. A. Markel, V. Mital, and J. C. Schotland, “Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition,” J. Opt. Soc. Am. A 20(5), 890–902 (2003).

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19(3), 558–566 (2002).

J. C. Schotland and V. A. Markel, “Inverse scattering with diffusing waves,” J. Opt. Soc. Am. A 18(11), 2767–2777 (2001).

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006).

[PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

[PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).

[PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).

H. P. Tuan, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.in press.

H. P. Tuan, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.in press.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008).

[PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).

G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Superresolution and corrections to the diffusion approximation in optical tomography,” Appl. Phys. Lett. 87(10), 101111 (2005).

J. C. Schotland and V. A. Markel, “Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation,” Inverse Problems and Imaging 1, 147–154 (2007).

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.in press.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).

[PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).

[PubMed]

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19(3), 558–566 (2002).

V. A. Markel, V. Mital, and J. C. Schotland, “Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition,” J. Opt. Soc. Am. A 20(5), 890–902 (2003).

J. C. Schotland and V. A. Markel, “Inverse scattering with diffusing waves,” J. Opt. Soc. Am. A 18(11), 2767–2777 (2001).

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Radiative Transport Equation in Rotated Reference Frames,” J. Phys. A 39(1), 115–137 (2006).

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006).

[PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008).

[PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[PubMed]

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).

V. Lukic, V. A. Markel, and J. C. Schotland, “Optical tomography with structured illumination,” Opt. Lett. 34(7), 983–985 (2009).

[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).

[PubMed]

A. Bassi, C. D’Andrea, G. Valentini, R. Cubeddu, and S. Arridge, “Temporal propagation of spatial information in turbid media,” Opt. Lett. 33(23), 2836–2838 (2008).

[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).

[PubMed]

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 056616 (2004).

[PubMed]

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology 40(4), 501–510 (2003).

[PubMed]

H. P. Tuan, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).

V. A. Markel, “Modified spherical hamonics method for solving the radiative transport equation,” Waves Random Media 14(1), L13–L19 (2004).

D. J. Cuccia, D. Abookasis, R. D. Frostig, and B. J. Tromberg, “Quantitative in vivo imaging of tissue absorption, scattering, and hemoglobin concentration in rat cortex using spatially-modulated structured light,” in In Vivo Optical Imaging of Brain Function, 2nd ed., R. D. Frostig, ed. (CRC, 2009).

A. C. Kak, and M. Slaney, Principles of Computerized Imaging (IEEE, 1988).

http://www.bli.uci.edu/ntroi/phantoms.php , retrieved April 24th, 2009.