Abstract

A T-shaped plasmonic array is proposed for application as an effective thermal emitter or biosensor. The reflection and thermal radiation properties of a T-shaped array are investigated theoretically. The angular dependent reflectance spectrum shows a clear resonant dip at 0.36eV for full polar angles. No other significant localized resonant mode is found in the investigated spectral range from 0.12eV to 0.64eV. According to the Kirchhoff’s law, the thermal radiation of the proposed structure can lead to a sharp peak at 3.5µm with low sideband emission. We have also found that the T-shaped structure filled with organic material such as PMMA with different thicknesses (10 nm -50 nm) can lead to significant shift of the resonance wavelength. Thus, the T-shaped structure can also be used as a good sensor for organic materials.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (New York: Hemisphere Publishing Corporation, 1981).
  2. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
    [CrossRef]
  3. P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910 (2005).
    [CrossRef]
  4. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
    [CrossRef]
  5. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
    [CrossRef]
  6. I. Puscasu, and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92, 233102 (2008).
    [CrossRef]
  7. S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
    [CrossRef]
  8. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
    [CrossRef]
  9. E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
    [CrossRef] [PubMed]
  10. V. Yannopapas "Thermal emission from three-dimensional arrays of gold nanoparticles," Phys. Rev. B 73, 113108 (2006).
    [CrossRef]
  11. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
    [CrossRef]
  12. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
    [CrossRef]
  13. T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006).
    [CrossRef]
  14. E. Wolf, "Non-cosmological red-shifts of spectral lines," Nature 326, 363-365 (1987).
    [CrossRef]
  15. E. Wolf and D. F. James, "Correlation-induced spectral changes," Rep. Prog. Phys. 59, 771-818 (1996).
    [CrossRef]
  16. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
    [CrossRef] [PubMed]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  19. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
    [CrossRef] [PubMed]
  20. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
    [CrossRef] [PubMed]
  21. D. H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition 1973), Chap. 2

2009

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
[CrossRef] [PubMed]

2008

I. Puscasu, and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92, 233102 (2008).
[CrossRef]

2007

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

2006

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
[CrossRef] [PubMed]

V. Yannopapas "Thermal emission from three-dimensional arrays of gold nanoparticles," Phys. Rev. B 73, 113108 (2006).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
[CrossRef]

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006).
[CrossRef]

2005

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
[CrossRef]

2003

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

2002

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

1999

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

1996

E. Wolf and D. F. James, "Correlation-induced spectral changes," Rep. Prog. Phys. 59, 771-818 (1996).
[CrossRef]

1995

1987

E. Wolf, "Non-cosmological red-shifts of spectral lines," Nature 326, 363-365 (1987).
[CrossRef]

Ben-Abdallah, P.

P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

Biswas, R.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

Celanovic, I.

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Chang, Y. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Chang, Y. T.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
[CrossRef]

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006).
[CrossRef]

Chen, C. Y.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Chuang, T. H.

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
[CrossRef]

Daly, J.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

De La Rue, R. M.

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
[CrossRef] [PubMed]

Ding, C. G.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

El-Kady, I.

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

Gaylord, T. K.

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Grann, E. B.

Greenwald, A.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

Herminghaus, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

James, D. F.

E. Wolf and D. F. James, "Correlation-induced spectral changes," Rep. Prog. Phys. 59, 771-818 (1996).
[CrossRef]

Jiang, Y. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Johnson, E.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Johnson, N. P.

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
[CrossRef] [PubMed]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Khokhar, A. Z.

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
[CrossRef] [PubMed]

Knoll, W.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

Kotov, N. A.

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
[CrossRef] [PubMed]

Kreiter, M.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

Lahiri, B.

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
[CrossRef] [PubMed]

Lee, S. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
[CrossRef]

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

McMeekin, S. G.

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
[CrossRef] [PubMed]

McNeal, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Meng, C. Y.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
[CrossRef]

Mittler-Neher, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Moharam, M. G.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

Murray, C.B.

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
[CrossRef] [PubMed]

Ni, B.

P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

O'Brien, S.

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
[CrossRef] [PubMed]

Oster, J.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Pommet, D. A.

Pralle, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Puscasu, I.

I. Puscasu, and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92, 233102 (2008).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Sambles, R.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

Schaich, W. L.

I. Puscasu, and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92, 233102 (2008).
[CrossRef]

Shevchenko, E. V.

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
[CrossRef] [PubMed]

Talapin, D. V.

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
[CrossRef] [PubMed]

Tsai, D. P.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
[CrossRef]

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006).
[CrossRef]

Wang, C. M.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Wolf, E.

E. Wolf and D. F. James, "Correlation-induced spectral changes," Rep. Prog. Phys. 59, 771-818 (1996).
[CrossRef]

E. Wolf, "Non-cosmological red-shifts of spectral lines," Nature 326, 363-365 (1987).
[CrossRef]

Yannopapas, V.

V. Yannopapas "Thermal emission from three-dimensional arrays of gold nanoparticles," Phys. Rev. B 73, 113108 (2006).
[CrossRef]

Ye, Y. H.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

App. Phys. Lett.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," App. Phys. Lett. 89, 173116 (2006).
[CrossRef]

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," App. Phys. Lett. 89, 173128 (2006).
[CrossRef]

Appl. Phys. Lett.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

I. Puscasu, and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92, 233102 (2008).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

J. Appl. Phys.

P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Nature

E. Wolf, "Non-cosmological red-shifts of spectral lines," Nature 326, 363-365 (1987).
[CrossRef]

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C.B. Murray, "Structural diversity in binary nanoparticle superlattices," Nature 439, 55-59 (2006).
[CrossRef] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature,  416, 61-64 (2002)
[CrossRef] [PubMed]

Opt. Commun.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[CrossRef]

Opt. Express.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express. 15, 14673-14678 (2007).
[CrossRef] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express. 17,1107-1115 (2009)
[CrossRef] [PubMed]

Phys. Rev. B

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
[CrossRef]

V. Yannopapas "Thermal emission from three-dimensional arrays of gold nanoparticles," Phys. Rev. B 73, 113108 (2006).
[CrossRef]

Rep. Prog. Phys.

E. Wolf and D. F. James, "Correlation-induced spectral changes," Rep. Prog. Phys. 59, 771-818 (1996).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

R. Siegel and J. Howell, Thermal Radiation Heat Transfer (New York: Hemisphere Publishing Corporation, 1981).

D. H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition 1973), Chap. 2

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic geometry of the investigated structures, (a) plasmonic multilayer structure and (b) T-shaped array.

Fig. 2.
Fig. 2.

(a). Simulated angle-dependent reflectance spectra of the plasmonic multilayer structure. Hy 2 distribution within one pitch of the periodic structure (b) at 0.37eV for θi =89° and (c) at 0.55eV for θi =0°. The bar charts on the right side of each panel indicate the relative strength of the reflectance or field intensity.

Fig. 3.
Fig. 3.

(a).TM mode simulated angle-dependent reflectance spectra of the proposed T-shaped array structure. (b) Hy2 distribution within one pitch of the T-shaped array at 0.36eV for θi =0°. (c)TE mode simulated angle-dependent reflectance spectra of the proposed T-shaped array structure. (d) Ey2 distribution within one pitch of the T-shaped array at 0.4eV for θi =0°. The bar charts on the right side of each panel indicate the relative strength of the reflectance or field intensity.

Fig. 4.
Fig. 4.

(a). Absorption spectra of the proposed T-shaped array structure for TM mode (solid line) and TE mode (dashed line) for θi =0°. (b) Emission spectra of the proposed T-shaped array structure (solid line) and the plasmonic multilayer structure (dashed line).

Fig. 5.
Fig. 5.

(a). Resonant wavelength as a function of the cavity length, Lc . Two different SiO2 thickness, tw =20nm (black square) and tw =50nm (red circle), are used in the simulation. The thin straight lines are included for checking the linearity of the behavior. (b). Reflectance versus wavelength for various PMMA thicknesses. The insert shows the shift of resonance wavelength, Δλ versus the thickness, t of PMMA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Emission(λ,T)=B(λ,T)([1R(λ,θ,ϕ)]cos(θ)dΩ)

Metrics