Abstract

We identify and differentially damage lipids and proteins using wavelengths between 2.6 and 3.8 μm from a fiber-based supercontinuum (SC) laser. Absorption spectroscopy of the constituents of normal artery and atherosclerotic plaque, including adipose tissue, macrophages and foam cells, are measured by a SC laser in the mid-infrared. By using the laser light within the C-H fatty acid and cholesterol esters absorption band, we also demonstrate differential damage of lipid-rich adipose tissue without damaging the protein-rich blood vessel wall. The experiments use a novel SC laser that is all-fiber-integrated with no moving parts, covers a continuous spectrum ranging from ~0.8 to beyond 4.2 µm, and outputs a time-averaged power scalable up to 10.5 W.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
    [CrossRef]
  2. H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
    [CrossRef] [PubMed]
  3. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004).
    [CrossRef]
  4. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007).
    [CrossRef] [PubMed]
  5. M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008).
    [CrossRef]
  6. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33(3), 285–287 (2008).
    [CrossRef] [PubMed]
  7. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
    [CrossRef] [PubMed]
  8. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
    [CrossRef]
  9. B. A. Hooper, A. Maheshwari, A. C. Curry, and T. M. Alter, “Catheter for diagnosis and therapy with infrared evanescent waves,” Appl. Opt. 42(16), 3205–3214 (2003).
    [CrossRef] [PubMed]
  10. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
    [CrossRef]
  11. Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
    [CrossRef]
  12. K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23(4), 233–237 (1998).
    [CrossRef] [PubMed]
  13. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
    [CrossRef] [PubMed]
  14. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
    [CrossRef]
  15. A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
    [CrossRef]
  16. R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991).
    [CrossRef] [PubMed]
  17. D. Kritchevsky, “Dietary-protein, cholesterol and atherosclerosis-a review of the early history,” J. Nutr. 125, S589–S593 (1995).
  18. T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
    [CrossRef] [PubMed]
  19. J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).
  20. P. Libby, “Atherosclerosis: The new view,” Sci. Am. 286, 47–55 (2002).
    [CrossRef]
  21. J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006).
    [CrossRef] [PubMed]
  22. T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
    [PubMed]
  23. P. R. Moreno, B. J. Marshik, and J. E. Muller, “Diffuse reflectance near-infrared spectroscopy as a clinical technique to detect high-risk atherosclerotic plaques,” in Handbook of the Vulnerable Plaque, R. Waksman and P. W. Serruys, eds. (Taylor & Francis, 2004), pp. 205–218.
  24. L. Wang, J. Chapman, R. A. Palmer, O. van Ramm, and B. Mizaikoff, “Classification of atherosclerotic rabbit aorta samples by mid-infrared spectroscopy using multivariate data analysis,” J. Biomed. Opt. 12, 024006–1-11 (2007).
  25. J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
    [CrossRef] [PubMed]
  26. G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988).
    [CrossRef] [PubMed]

2009 (1)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

2008 (6)

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008).
[CrossRef]

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33(3), 285–287 (2008).
[CrossRef] [PubMed]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[CrossRef] [PubMed]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

2007 (2)

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007).
[CrossRef] [PubMed]

2006 (2)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006).
[CrossRef] [PubMed]

2004 (2)

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004).
[CrossRef]

2003 (2)

B. A. Hooper, A. Maheshwari, A. C. Curry, and T. M. Alter, “Catheter for diagnosis and therapy with infrared evanescent waves,” Appl. Opt. 42(16), 3205–3214 (2003).
[CrossRef] [PubMed]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

2002 (1)

P. Libby, “Atherosclerosis: The new view,” Sci. Am. 286, 47–55 (2002).
[CrossRef]

1998 (3)

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23(4), 233–237 (1998).
[CrossRef] [PubMed]

J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).

1995 (1)

D. Kritchevsky, “Dietary-protein, cholesterol and atherosclerosis-a review of the early history,” J. Nutr. 125, S589–S593 (1995).

1991 (1)

R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991).
[CrossRef] [PubMed]

1990 (1)

T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
[CrossRef] [PubMed]

1988 (2)

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988).
[CrossRef] [PubMed]

Aizawa, K.

K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23(4), 233–237 (1998).
[CrossRef] [PubMed]

Alter, T. M.

Anderson, R. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988).
[CrossRef] [PubMed]

Arai, T.

T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
[CrossRef] [PubMed]

Awazu, K.

K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23(4), 233–237 (1998).
[CrossRef] [PubMed]

Bai, Y.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008).
[CrossRef]

Banas, A.

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

Benson, S. V.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Bjornstad, K. A.

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

Blakely, E. A.

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

Blankenberg, F. G.

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

Brennan, J. F.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Caplan, J. D.

J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006).
[CrossRef] [PubMed]

Chandler, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Clarke, R. H.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Curry, A. C.

Darvish, S. R.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008).
[CrossRef]

Deinum, G.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

DeJesus, S. T.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Dodson, M. V.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Douglas, D. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Dylla, H. F.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Farinelli, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Feld, M. S.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Feldstein, M. L.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Fernyhough, M. E.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Fitzmaurice, M.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Freeman, M. J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

Fujikawa, A.

T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
[CrossRef] [PubMed]

Gal, D.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Gebhart, W.

R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991).
[CrossRef] [PubMed]

Gentner, J. M.

J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).

Gubeli, J.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Guelachvili, G.

Guo, M.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Halaburka, K. R.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Hausman, G. J.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Helterline, D. L.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Hill, R. A.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Holman, H.-Y. N.

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

Hooper, B. A.

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[CrossRef] [PubMed]

Hunt, A. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Hutson, M. S.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Islam, M. N.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

Isner, J. M.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Jones, R. L.

Jordan, K.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Kaminski, C. F.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[CrossRef] [PubMed]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Kikuchi, M.

T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
[CrossRef] [PubMed]

Kinkel, A. D.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Kisiel, A.

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

Knobler, R. M.

R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991).
[CrossRef] [PubMed]

Kramer, J. R.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Kritchevsky, D.

D. Kritchevsky, “Dietary-protein, cholesterol and atherosclerosis-a review of the early history,” J. Nutr. 125, S589–S593 (1995).

Kwiatek, W. M.

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

LaMuraglia, G. M.

G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988).
[CrossRef] [PubMed]

Langridge, J. M.

Laubach, H.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Laurila, T.

Lees, R. S.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Libby, P.

P. Libby, “Atherosclerosis: The new view,” Sci. Am. 286, 47–55 (2002).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Maheshwari, A.

Maier, R. R. J.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004).
[CrossRef]

Mandon, J.

Manstein, D.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Marcelli, A.

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

Martin, M. C.

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

McKinney, W. R.

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

McNaghten, E. D.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004).
[CrossRef]

Meyhofer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Mizuno, K.

T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
[CrossRef] [PubMed]

Mourou, G.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Muller, J. E.

J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006).
[CrossRef] [PubMed]

Murray, S.

G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988).
[CrossRef] [PubMed]

Myles, J. L.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Nagai, A.

K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23(4), 233–237 (1998).
[CrossRef] [PubMed]

Nakagawa, M.

T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
[CrossRef] [PubMed]

Neil, G. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Nesto, R. W.

J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006).
[CrossRef] [PubMed]

Neumann, R. A.

R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991).
[CrossRef] [PubMed]

Oberg, K. S.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Paluszkiewicz, C.

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

Piccinini, A.

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

Picqué, N.

Pieczkowski, F.

R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991).
[CrossRef] [PubMed]

Polavarapu, P. L.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Prince, M. R.

G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988).
[CrossRef] [PubMed]

Razeghi, M.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008).
[CrossRef]

Reid, D. T.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004).
[CrossRef]

Römer, T. J.

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Rongione, A. J.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Shanmugam, G.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Shinn, M.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Slivken, S.

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008).
[CrossRef]

Slovenkai, G. A.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Sorokin, E.

Sorokina, I. T.

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Steg, P. G.

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

Terry, F. L.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

Tillman, K. A.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004).
[CrossRef]

Vance, T. J.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Vierck, J. L.

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

Walker, P. J.

J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).

Walsh, M. D.

J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).

Watt, R. S.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
[CrossRef] [PubMed]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Waxman, S.

J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006).
[CrossRef] [PubMed]

Wentrup-Byrne, E.

J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).

Williams, G. P.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

Xiao, Y.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

Yaroslavsky, A. N.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

Zhang, P.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy across a 14.4 THz spectral range using a broadband femtosecond optical parametric oscillator,” Appl. Phys. Lett. 85(16), 3366–3368 (2004).
[CrossRef]

Biophys. J. (1)

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Cell Mol Biol (Noisy-le-grand) (1)

J. M. Gentner, E. Wentrup-Byrne, P. J. Walker, and M. D. Walsh, “Comparison of fresh and post-mortem human arterial tissue: an analysis using FT-IR microspectroscopy and chemometrics,” Cell Mol Biol (Noisy-le-grand) 44(1), 251–259 (1998).

Circulation (1)

T. J. Römer, J. F. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97(9), 878–885 (1998).
[PubMed]

Cytotechnology (1)

A. D. Kinkel, M. E. Fernyhough, D. L. Helterline, J. L. Vierck, K. S. Oberg, T. J. Vance, G. J. Hausman, R. A. Hill, M. V. Dodson, and A. D., “Oil red-O stains non-adipogenic cells: a precautionary note,” Cytotechnology 46(1), 49–56 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
[CrossRef]

J. Am. Acad. Dermatol. (1)

R. A. Neumann, R. M. Knobler, F. Pieczkowski, and W. Gebhart, “Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin,” J. Am. Acad. Dermatol. 25(6 Pt 1), 991–998 (1991).
[CrossRef] [PubMed]

J. Am. Coll. Cardiol. (1)

J. D. Caplan, S. Waxman, R. W. Nesto, and J. E. Muller, “Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques,” J. Am. Coll. Cardiol. 47(8Suppl), C92–C96 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

H.-Y. N. Holman, K. A. Bjornstad, M. C. Martin, W. R. McKinney, E. A. Blakely, and F. G. Blankenberg, “Mid-infrared reflectivity of experimental atheromas,” J. Biomed. Opt. 13(3), 030503 (2008).
[CrossRef] [PubMed]

J. Nutr. (1)

D. Kritchevsky, “Dietary-protein, cholesterol and atherosclerosis-a review of the early history,” J. Nutr. 125, S589–S593 (1995).

Lasers Surg. Med. (5)

T. Arai, K. Mizuno, A. Fujikawa, M. Nakagawa, and M. Kikuchi, “Infrared absorption spectra ranging from 2.5 to 10 microns at various layers of human normal abdominal aorta and fibrofatty atheroma in vitro,” Lasers Surg. Med. 10(4), 357–362 (1990).
[CrossRef] [PubMed]

K. Awazu, A. Nagai, and K. Aizawa, “Selective removal of cholesterol esters in an arteriosclerotic region of blood vessels with a free-electron laser,” Lasers Surg. Med. 23(4), 233–237 (1998).
[CrossRef] [PubMed]

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

J. M. Isner, D. Gal, P. G. Steg, S. T. DeJesus, A. J. Rongione, K. R. Halaburka, G. A. Slovenkai, and R. H. Clarke, “Percutaneous, in vivo excimer laser angioplasty: results in two experimental animal models,” Lasers Surg. Med. 8(3), 223–232 (1988).
[CrossRef] [PubMed]

G. M. LaMuraglia, S. Murray, R. R. Anderson, and M. R. Prince, “Effect of pulse duration on selective ablation of atherosclerotic plaque by 480- to 490-nanometer laser radiation,” Lasers Surg. Med. 8(1), 18–21 (1988).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics News (1)

M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photonics News 19(7), 42–47 (2008).
[CrossRef]

Sci. Am. (1)

P. Libby, “Atherosclerosis: The new view,” Sci. Am. 286, 47–55 (2002).
[CrossRef]

Vib. Spectrosc. (1)

C. Paluszkiewicz, W. M. Kwiatek, A. Banas, A. Kisiel, A. Marcelli, and A. Piccinini, “SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues,” Vib. Spectrosc. 43(1), 237–242 (2007).
[CrossRef]

Other (2)

P. R. Moreno, B. J. Marshik, and J. E. Muller, “Diffuse reflectance near-infrared spectroscopy as a clinical technique to detect high-risk atherosclerotic plaques,” in Handbook of the Vulnerable Plaque, R. Waksman and P. W. Serruys, eds. (Taylor & Francis, 2004), pp. 205–218.

L. Wang, J. Chapman, R. A. Palmer, O. van Ramm, and B. Mizaikoff, “Classification of atherosclerotic rabbit aorta samples by mid-infrared spectroscopy using multivariate data analysis,” J. Biomed. Opt. 12, 024006–1-11 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SC laser setup comprising a DFB laser diode followed by three stages of fiber amplifiers plus SC generation fibers.

Fig. 2
Fig. 2

(a). SC spectrum generated in 2 m length of single mode fibers plus 7 m length of ZBLAN fibers (left). (b). Illustration of 2.5 W mid-IR SC laser prototype (inside follows the block diagram of Fig. 1) (right).

Fig. 3
Fig. 3

Experimental setup for (a) reflection-absorption spectra measurement, (b) measured SC amplitude fluctuation using dual-beam detection scheme at 3400 nm, and (c) differential laser damage.

Fig. 4
Fig. 4

Microscope images of macrophages (left) and foam cells (right). Both cell preparations are stained with oil red O. Macrophages contain essentially no lipid droplets while macrophages differentiated into foam cells (right) exhibit numerous lipid droplets.

Fig. 10
Fig. 10

MTT staining of artery tissue at laser fluence of 47, 95, 127, and 164 mJ/mm2. Laser damaged region lacks MTT stains.

Fig. 5
Fig. 5

Mid-IR SC laser based reflection-absorption spectra of normal artery compositions: a) endothelial cells, b) smooth muscle cells; and atherosclerotic plaque constituents: c) macrophages, d) adipose tissue, e) foam cells.

Fig. 6
Fig. 6

Mid-IR SC laser based reflection-absorption spectra of a) egg yolk, b) endothelial cells. The two spectra are plotted in logarithm scale and the absorption spectra are vertically displaced to match the absorption feature around 3 µm.

Fig. 7
Fig. 7

Absorption spectra measured by FTIR of a) adipose tissue, b) artery vessel, c) coronary artery, and d) heart muscle. The thickness of the samples is 7 µm +/− 2 µm. The spectra are plotted in logarithm scale.

Fig. 8
Fig. 8

Differential damage of adipose tissue: a) power dependence of the damage diameter in adipose tissue and bovine artery, b) tissue image after damage at different laser fluence levels. Laser pulse duration is 1 ns, and exposure time is 5 s. The repetition rate of the laser pulse varies from ~100 kHz to 500 kHz depending on fluence level. The adipose tissue image is a subtraction of before and after laser damage; the damaged region is in bright color while the unaffected region is dark color.

Fig. 9
Fig. 9

Histology of artery tissue at different laser fluence levels: a) H&E stained, b) birefringence imaging. Areas of laser effect are indicated by dotted line brackets.

Metrics