Abstract

Photorefractive materials are dynamic holographic storage media that are highly sensitive to coherent light fields and relatively insensitive to a uniform light background. This can be exploited to effectively separate ballistic light from multiply-scattered light when imaging through turbid media. We developed a highly sensitive photorefractive polymer composite and incorporated it into a holographic optical coherence imaging system. This approach combines the advantages of coherence-domain imaging with the benefits of holography to form a high-speed wide-field imaging technique. By using coherence-gated holography, image-bearing ballistic light can be captured in real-time without computed tomography. We analyzed the implications of Fourier-domain and image-domain holography on the field of view and image resolution for a transmission recording geometry, and demonstrate holographic depth-resolved imaging of tumor spheroids with 12 µm axial and 10 µm lateral resolution, achieving a data acquisition speed of 8×105 voxels/s.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, "Life sciences require the third dimension," Curr. Opin. Cell Biol. 18, 117-124 (2006).
    [CrossRef] [PubMed]
  2. P. N. Prasad, Introduction to Biophotonics (Wiley Interscience, New York, 2003).
    [CrossRef]
  3. P. Török and F.-J. Kao, Optical Imaging and Microscopy (Springer, Berlin Heidelberg, 2003).
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  5. N. Abramson, "Light-in-Flight Recording by Holography," Opt. Lett. 3, 121-123 (1978).
    [CrossRef] [PubMed]
  6. A. V. Mamaev, L. I. Ivleva, N.M. Polozkov, and S. V. V., "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, vol. 11 of Technical Digest Series, pp. 632-633 (Optical Society of America, 1993).
  7. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, "2-Dimensional Imaging through Diffusing Media Using 150-fs Gated Electronic Holography Techniques," Opt. Lett. 16, 487-489 (1991).
    [CrossRef] [PubMed]
  8. U. Schnars and W. Jueptner, Digital Holography (Springer, Berlin, 2004).
  9. L. F. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express 13, 5621-5627 (2005).
    [CrossRef] [PubMed]
  10. K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007).
    [CrossRef] [PubMed]
  11. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, "Depth-Resolved Holographic Imaging through Scattering Media by Photorefraction," Opt. Lett. 20, 1331-1333 (1995).
    [CrossRef] [PubMed]
  12. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996).
    [CrossRef]
  13. P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
    [CrossRef]
  14. C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J Phys. D-Appl. Phys. 36, R207-R227 (2003).
    [CrossRef]
  15. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
    [CrossRef]
  16. D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, "Dynamic holography in a broad-area optically pumped vertical GaAs microcavity," J. Opt. Soc. Am. B 18, 257-263 (2001).
    [CrossRef]
  17. D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, and S. R. Marder, "Transillumination imaging through scattering media by use of photorefractive polymers," Opt. Lett. 23, 153-155 (1998).
    [CrossRef]
  18. P. Dean, M. R. Dickinson, and D. P. West, "Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device," Appl. Phys. Lett. 85, 363-365 (2004).
    [CrossRef]
  19. M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
    [CrossRef]
  20. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, "Elimination of beam walk-off in low-coherence off-axis photorefractive holography," Opt. Lett. 26, 334-336 (2001).
    [CrossRef]
  21. K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14,057-14,064 (2007).
    [CrossRef]
  22. J. A. Parrish, "New Concepts in Therapeutic Photomedicine - Photochemistry, Optical Targeting and the Therapeutic Window," J. Invest. Dermatol. 77, 45-50 (1981).
    [CrossRef] [PubMed]
  23. P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
    [CrossRef] [PubMed]
  24. Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera," Opt. Commun. 281, 1889-1895 (2008).
    [CrossRef]
  25. C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
    [CrossRef]
  26. R. Bittner and K. Meerholz, Photorefractive Materials and Their Applications 2, vol. 114 of Springer Series in Optical Sciences, chap. Amorphous Organic Photorefractive Materials, pp. 419-486 (Springer, New York, 2007).
  27. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally Enhanced Photorefractive Effect in Polymers," J. Opt. Soc. Am. B 11, 320-330 (1994).
    [CrossRef]
  28. M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007).
    [CrossRef]
  29. S. K¨ober, F. Gallego-Gomez, M. Salvador, K. Meerholz, F. B. Kooistra, J. C. Hummelen, F. Mielke, and O. Nuyken, "Improved fullerene-sensitized organic photorefractive polymers for coherence based NIR-imaging," Manuscript in preparation.
  30. E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
    [CrossRef]
  31. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  32. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Croningolomb, "Femtosecond Temporal Encoding in Barium-Titanate," Opt. Lett. 16, 1984-1986 (1991).
    [CrossRef] [PubMed]
  33. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100-Mu-M Depth-Resolved Holographic Imaging through Scattering Media in the near-Infrared," Opt. Lett. 20, 2330-2332 (1995).
    [CrossRef] [PubMed]
  34. K. Jeong, L. L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantumwell films," Appl.Opt. 43, 3802-3811 (2004).
    [CrossRef] [PubMed]
  35. Sutherla . Rm, J. A. Mccredie, and W. R. Inch, "Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas," J. NATL. CANCER I. 46, 113-120 (1971).
  36. G. Hamilton, "Multicellular spheroids as an in vitro tumor model," Cancer Lett. 131, 29-34 (1998).
    [CrossRef] [PubMed]
  37. P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996).
    [CrossRef] [PubMed]
  38. L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
    [CrossRef] [PubMed]
  39. K. Jeong, L. L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005).
    [CrossRef] [PubMed]

2008

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera," Opt. Commun. 281, 1889-1895 (2008).
[CrossRef]

2007

M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007).
[CrossRef]

K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14,057-14,064 (2007).
[CrossRef]

K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007).
[CrossRef] [PubMed]

2006

P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, "Life sciences require the third dimension," Curr. Opin. Cell Biol. 18, 117-124 (2006).
[CrossRef] [PubMed]

2005

2004

P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

P. Dean, M. R. Dickinson, and D. P. West, "Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

K. Jeong, L. L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantumwell films," Appl.Opt. 43, 3802-3811 (2004).
[CrossRef] [PubMed]

2003

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J Phys. D-Appl. Phys. 36, R207-R227 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

2002

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

2001

1998

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, and S. R. Marder, "Transillumination imaging through scattering media by use of photorefractive polymers," Opt. Lett. 23, 153-155 (1998).
[CrossRef]

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

G. Hamilton, "Multicellular spheroids as an in vitro tumor model," Cancer Lett. 131, 29-34 (1998).
[CrossRef] [PubMed]

1996

P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996).
[CrossRef] [PubMed]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996).
[CrossRef]

1995

1994

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally Enhanced Photorefractive Effect in Polymers," J. Opt. Soc. Am. B 11, 320-330 (1994).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
[CrossRef]

1991

1981

J. A. Parrish, "New Concepts in Therapeutic Photomedicine - Photochemistry, Optical Targeting and the Therapeutic Window," J. Invest. Dermatol. 77, 45-50 (1981).
[CrossRef] [PubMed]

1978

1971

Sutherla . Rm, J. A. Mccredie, and W. R. Inch, "Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas," J. NATL. CANCER I. 46, 113-120 (1971).

Abramson, N.

Acioli, L. H.

Ansari, Z.

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, "Elimination of beam walk-off in low-coherence off-axis photorefractive holography," Opt. Lett. 26, 334-336 (2001).
[CrossRef]

Barry, N. P.

Bjorklund, G. C.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, B. S.

Chen, H.

Chen, Y.

Croningolomb, M.

Dainty, J. C.

Dean, P.

P. Dean, M. R. Dickinson, and D. P. West, "Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

Delpy, D. T.

P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996).
[CrossRef] [PubMed]

Dickinson, M. R.

P. Dean, M. R. Dickinson, and D. P. West, "Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

Dilworth, D.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Dunsby, C.

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J Phys. D-Appl. Phys. 36, R207-R227 (2003).
[CrossRef]

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Firbank, M.

P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

French, P. M. W.

French, P. M.W.

P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Croningolomb, "Femtosecond Temporal Encoding in Barium-Titanate," Opt. Lett. 16, 1984-1986 (1991).
[CrossRef] [PubMed]

Gallego-Gomez, F.

M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007).
[CrossRef]

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gu, Y.

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, "Elimination of beam walk-off in low-coherence off-axis photorefractive holography," Opt. Lett. 26, 334-336 (2001).
[CrossRef]

Hache, F.

Hamilton, G.

G. Hamilton, "Multicellular spheroids as an in vitro tumor model," Cancer Lett. 131, 29-34 (1998).
[CrossRef] [PubMed]

Hargrave, P.

P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Horhold, H. H.

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hummelen, J. C.

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

Hyde, S. C. W.

Inch, W. R.

Sutherla . Rm, J. A. Mccredie, and W. R. Inch, "Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas," J. NATL. CANCER I. 46, 113-120 (1971).

Ippen, E. P.

Jeong, K.

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14,057-14,064 (2007).
[CrossRef]

K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007).
[CrossRef] [PubMed]

K. Jeong, L. L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005).
[CrossRef] [PubMed]

K. Jeong, L. L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantumwell films," Appl.Opt. 43, 3802-3811 (2004).
[CrossRef] [PubMed]

Jones, R.

Keller, P. J.

P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, "Life sciences require the third dimension," Curr. Opin. Cell Biol. 18, 117-124 (2006).
[CrossRef] [PubMed]

Kim, M. K.

Kippelen, B.

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, and S. R. Marder, "Transillumination imaging through scattering media by use of photorefractive polymers," Opt. Lett. 23, 153-155 (1998).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
[CrossRef]

Klein, M. B.

Knuechel, R.

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

Kober, S.

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007).
[CrossRef]

Kong, H.

Kreutz, M.

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

Kunz-Schughart, L. A.

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

Kwolek, K. M.

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, "Dynamic holography in a broad-area optically pumped vertical GaAs microcavity," J. Opt. Soc. Am. B 18, 257-263 (2001).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Leith, E.

Lenox, C.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lopez, J.

Lynn, M. J.

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996).
[CrossRef]

Marder, S. R.

Mccredie, J. A.

Sutherla . Rm, J. A. Mccredie, and W. R. Inch, "Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas," J. NATL. CANCER I. 46, 113-120 (1971).

Mecher, E.

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

Meerholz, K.

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007).
[CrossRef]

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
[CrossRef]

Melloch, M. R.

K. Jeong, L. L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005).
[CrossRef] [PubMed]

P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

K. Jeong, L. L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantumwell films," Appl.Opt. 43, 3802-3811 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, "Elimination of beam walk-off in low-coherence off-axis photorefractive holography," Opt. Lett. 26, 334-336 (2001).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996).
[CrossRef]

Moerner, W. E.

Mustata, M.

P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

Nicholson, P.W.

P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996).
[CrossRef] [PubMed]

Nolte, D. D.

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14,057-14,064 (2007).
[CrossRef]

K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007).
[CrossRef] [PubMed]

K. Jeong, L. L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005).
[CrossRef] [PubMed]

P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

K. Jeong, L. L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantumwell films," Appl.Opt. 43, 3802-3811 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, "Elimination of beam walk-off in low-coherence off-axis photorefractive holography," Opt. Lett. 26, 334-336 (2001).
[CrossRef]

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, "Dynamic holography in a broad-area optically pumped vertical GaAs microcavity," J. Opt. Soc. Am. B 18, 257-263 (2001).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996).
[CrossRef]

Pampaloni, F.

P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, "Life sciences require the third dimension," Curr. Opin. Cell Biol. 18, 117-124 (2006).
[CrossRef] [PubMed]

Parrish, J. A.

J. A. Parrish, "New Concepts in Therapeutic Photomedicine - Photochemistry, Optical Targeting and the Therapeutic Window," J. Invest. Dermatol. 77, 45-50 (1981).
[CrossRef] [PubMed]

Peng, L.

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

Peng, L. L.

Peyghambarian, N.

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, and S. R. Marder, "Transillumination imaging through scattering media by use of photorefractive polymers," Opt. Lett. 23, 153-155 (1998).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
[CrossRef]

Prauzner, J.

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rm, Sutherla

Sutherla . Rm, J. A. Mccredie, and W. R. Inch, "Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas," J. NATL. CANCER I. 46, 113-120 (1971).

Rockel, H.

Salvador, M.

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007).
[CrossRef]

Sandalphon, B. L.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
[CrossRef]

Sato, M.

Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera," Opt. Commun. 281, 1889-1895 (2008).
[CrossRef]

Savina, O.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Silence, S. M.

Steele, D. D.

Stelzer, E. H. K.

P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, "Life sciences require the third dimension," Curr. Opin. Cell Biol. 18, 117-124 (2006).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Streetman, B.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tillmann, H.

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

Turek, J. J.

Tziraki, M.

Ulman, M.

Valdmanis, J.

Volodin, B. L.

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, and S. R. Marder, "Transillumination imaging through scattering media by use of photorefractive polymers," Opt. Lett. 23, 153-155 (1998).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
[CrossRef]

Watanabe, Y.

Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera," Opt. Commun. 281, 1889-1895 (2008).
[CrossRef]

Wechsler, B. A.

West, D. P.

P. Dean, M. R. Dickinson, and D. P. West, "Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

Yu, L. F.

Yu, P.

P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Dean, M. R. Dickinson, and D. P. West, "Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008).
[CrossRef]

M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007).
[CrossRef]

R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996).
[CrossRef]

P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003).
[CrossRef]

Appl.Opt.

K. Jeong, L. L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantumwell films," Appl.Opt. 43, 3802-3811 (2004).
[CrossRef] [PubMed]

Cancer Lett.

G. Hamilton, "Multicellular spheroids as an in vitro tumor model," Cancer Lett. 131, 29-34 (1998).
[CrossRef] [PubMed]

Curr. Opin. Cell Biol.

P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, "Life sciences require the third dimension," Curr. Opin. Cell Biol. 18, 117-124 (2006).
[CrossRef] [PubMed]

Int. J. Exp. Pathol.

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

J Phys. D-Appl. Phys.

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J Phys. D-Appl. Phys. 36, R207-R227 (2003).
[CrossRef]

J. Invest. Dermatol.

J. A. Parrish, "New Concepts in Therapeutic Photomedicine - Photochemistry, Optical Targeting and the Therapeutic Window," J. Invest. Dermatol. 77, 45-50 (1981).
[CrossRef] [PubMed]

J. NATL. CANCER I.

Sutherla . Rm, J. A. Mccredie, and W. R. Inch, "Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas," J. NATL. CANCER I. 46, 113-120 (1971).

J. Opt. Soc. Am. B

Nature (London)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994).
[CrossRef]

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002).
[CrossRef]

Opt. Commun.

Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera," Opt. Commun. 281, 1889-1895 (2008).
[CrossRef]

C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003).
[CrossRef]

Opt. Express

K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14,057-14,064 (2007).
[CrossRef]

L. F. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express 13, 5621-5627 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996).
[CrossRef] [PubMed]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

U. Schnars and W. Jueptner, Digital Holography (Springer, Berlin, 2004).

A. V. Mamaev, L. I. Ivleva, N.M. Polozkov, and S. V. V., "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, vol. 11 of Technical Digest Series, pp. 632-633 (Optical Society of America, 1993).

P. N. Prasad, Introduction to Biophotonics (Wiley Interscience, New York, 2003).
[CrossRef]

P. Török and F.-J. Kao, Optical Imaging and Microscopy (Springer, Berlin Heidelberg, 2003).

S. K¨ober, F. Gallego-Gomez, M. Salvador, K. Meerholz, F. B. Kooistra, J. C. Hummelen, F. Mielke, and O. Nuyken, "Improved fullerene-sensitized organic photorefractive polymers for coherence based NIR-imaging," Manuscript in preparation.

R. Bittner and K. Meerholz, Photorefractive Materials and Their Applications 2, vol. 114 of Springer Series in Optical Sciences, chap. Amorphous Organic Photorefractive Materials, pp. 419-486 (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

General principle of coherence-gated holographic imaging using a photorefractive (PR) polymer device as coherence filter.

Fig. 2.
Fig. 2.

(a) Experimental layout for holographic optical coherence imaging. M: mirror. λ/2: half-wave plate. λ/4: quarter-wave plate. PBS: polarization beam splitter. L1-L3: lenses. PR: photorefractive polymer device. LD: cw laser diode. FP: Fourier plane. The inset shows the positioning of the sample from a side view. (b) Output spectra of the Clark-MXR, NJA-5 femtosecond Ti:Sapphire laser in cw and mode-locked operation. (c) Corresponding fringe pattern (interferogram) of the Ti:Sapphire laser in mode-locked operation using a mirror as target.

Fig. 3.
Fig. 3.

(a) Temporal evolution of the diffraction efficiency for the PF6-TPD composite and the PVK-based material PVK:DMNPAA:MNPAA:ECZ:TNFM (41.5:25:25:7.5:1 wt%; λ=830 nm). The external electric field was turned on 30 s before hologram recording was started (pre-poling step). (b) Comparison of the steady-state performance for the PF6-TPD material using a cw laser diode (LD, λ=830 nm), a superluminescent diode (SLD, λ=840 nm, lc =42 µm) and a femtosecond pulsed Ti:Sapphire laser (Ti:Sa, λ=840 nm, lc =8 µm) for hologram recording. The optical polarization was ”s” for the write beams and ”p” for the read-out beam.

Fig. 4.
Fig. 4.

Holographic imaging regimes and their influence on the field of view and image resolution using a PR polymer device as the recording medium: Fourier-domain holography FDH (top) and image-domain holography IDH (bottom). In FDH the field of view is preserved but the resolution is severely affected in the horizontal direction of the reconstructed image. In IDH the resolution remains intact, the field of view being restricted by the effective interaction region. (a) and (b) show holographic images of the USAF target and of diffuse paper with the symbol ®, respectively, in mode-locked operation using FDH. (c), (d) and (e) show the same targets using IDH.

Fig. 5.
Fig. 5.

Geometric considerations for beam walk-off elimination in a PR polymer device. (a) The walk-off is intrinsically suppressed for a 3D object. TOF: time-of-flight. Adapted from Ref. [10]. (b) Typical off-axis recording scheme for PR polymers. For a 2D target the beam walk-off effect can be suppressed by tilting the target.

Fig. 6.
Fig. 6.

Coherence-gated holographic images of test targets and tissue samples: (a) polyurethane foam [19], (b) unstained human skin section (60 µm) in which two hair follicles are discernible (inset: ×20 microscope image of an adjacent stained slab. The region shown in the holographic image is outlined), (c) 73 µm thick trabecular bone sample, imbedded in a transparent matrix for fixation. The lamellar layers below the ”matrix” arrow and above the ”bone tissue” arrow are due to thickness variations inside the matrix.

Fig. 7.
Fig. 7.

Selected views of a 740-µm-diameter rat osteogenic sarcoma tumor spheroid. (a) Holographic image in cw operation. (b) Integrated view of the spheroid produced by summation of the en face sections of the full data set. (b) Medial en face cross-section. Each image was scaled separately.

Fig. 8.
Fig. 8.

Selected X,Y (en face) sections of a 740-µm-diameter tumor spheroid immersed in growth medium. The holograms were captured with a step delay of 25µm. The bottom of the tumor is at frame 8. The images are displayed in a logarithmic intensity scale.

Fig. 9.
Fig. 9.

Volumetric visualizations of rat tumor spheroid (∅≈800 µm). (a) Collection of 350 pseudo-A-scans selected from stacked en face holographic images. (b) 3D rendering in a box generated from a fly-through data set. (c) 3D rendering of the same tumor with a vertical cut. The light was incident from the top.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S=ηext(texp)Itot,exttexp,
Rs=1.22 λ f (MD).
Δlc=Δz=lFWHM2=2ln2πλ̄2Δλ,
w=lcsin(θint2),
γ=arctan (12tanβ).
β=arctan[ntan(αξ)]withξ=(cos1narcsin[(sinϑ1)n])cosϑ1,
α=arcsin[(sinϑ1)n]arcsin[(sinϑ2)n].

Metrics