Abstract

We present a new design of wavelength selective reflector composed of a Y junction and a singly coupled microring resonator, and demonstrate its biochemical sensing applications with a prototype device. In contrast with other reflectors like distributed Bragg reflectors, this device acts as notch filter at its reflection port. One promising application of the device is for remote sensing of harsh or inaccessible site, where only one optical fiber is required to transmit the input and reflected light signal over a long distance. The design can also be used to make microring cavity lasers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  3. G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17(2), 390–392 (2005).
    [CrossRef]
  4. J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
    [CrossRef]
  5. B. E. Little, S. T. Chu, and H. A. Haus, “Second-order filtering and sensing with partially coupled traveling waves in a single resonator,” Opt. Lett. 23(20), 1570–1572 (1998).
    [CrossRef]
  6. Y. Chung, D.-G. Kim, and N. Dagli, “Widely tunable coupled-ring reflector laser diode,” IEEE Photon. Technol. Lett. 17(9), 1773–1775 (2005).
    [CrossRef]
  7. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
    [CrossRef]
  8. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [CrossRef]
  9. C.-Y. Chao and L. J. Guo, “Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators,” Appl. Phys. Lett. 84(14), 2479–2481 (2004).
    [CrossRef]
  10. D. R. Lide, “Concentrative Properties of Aqueous Solutions,” in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008) (CRC Press/Taylorand Francis, Boca Raton, FL., 2007), pp. 2640–2640.
  11. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
    [CrossRef]
  12. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
    [CrossRef]
  13. V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007).
    [CrossRef]
  14. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
    [CrossRef]
  15. I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
    [CrossRef]
  16. B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005).
    [CrossRef]
  17. H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14(15), 6705–6712 (2006).
    [CrossRef] [PubMed]
  18. A. W. Fang, B. R. Koch, K.-G. Gan, H. Park, R. Jones, O. Cohen, M. J. Paniccia, D. J. Blumenthal, and J. E. Bowers, “A racetrack mode-locked silicon evanescent laser,” Opt. Express 16(2), 1393–1398 (2008).
    [CrossRef] [PubMed]

2008

2007

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007).
[CrossRef]

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

2006

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14(15), 6705–6712 (2006).
[CrossRef] [PubMed]

2005

B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005).
[CrossRef]

G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

Y. Chung, D.-G. Kim, and N. Dagli, “Widely tunable coupled-ring reflector laser diode,” IEEE Photon. Technol. Lett. 17(9), 1773–1775 (2005).
[CrossRef]

2004

C.-Y. Chao and L. J. Guo, “Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators,” Appl. Phys. Lett. 84(14), 2479–2481 (2004).
[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

2003

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

2000

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

1998

1997

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Aydinli, A.

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Bhola, B.

B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005).
[CrossRef]

Blumenthal, D. J.

Bowers, J. E.

Casamassima, B.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators,” Appl. Phys. Lett. 84(14), 2479–2481 (2004).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

Cheben, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Chen, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Chu, S. T.

Chung, Y.

Y. Chung, D.-G. Kim, and N. Dagli, “Widely tunable coupled-ring reflector laser diode,” IEEE Photon. Technol. Lett. 17(9), 1773–1775 (2005).
[CrossRef]

Cohen, O.

Dagli, N.

Y. Chung, D.-G. Kim, and N. Dagli, “Widely tunable coupled-ring reflector laser diode,” IEEE Photon. Technol. Lett. 17(9), 1773–1775 (2005).
[CrossRef]

Dalton, L. R.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

De, F.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007).
[CrossRef]

Delage, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Dell’Olio, F.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007).
[CrossRef]

Densmore, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Fang, A. W.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Gan, K.-G.

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators,” Appl. Phys. Lett. 84(14), 2479–2481 (2004).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

Hau, S.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Haus, H. A.

Janz, S.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Jen, A. K. Y.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Jones, R.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kim, D.-G.

Y. Chung, D.-G. Kim, and N. Dagli, “Widely tunable coupled-ring reflector laser diode,” IEEE Photon. Technol. Lett. 17(9), 1773–1775 (2005).
[CrossRef]

Kiyat, I.

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Kocabas, C.

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Koch, B. R.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kuo, Y.-H.

Lamontagne, B.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Lapointe, J.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Little, B. E.

Liu, A.

Luo, J.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Paloczi, G. T.

G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

Paniccia, M.

Paniccia, M. J.

Park, H.

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Poon, J. K. S.

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

Post, E.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Pyajt, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Raday, O.

Robinson, G.

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
[CrossRef]

Rong, H.

Scheuer, J.

G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

Schmid, J. H.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Shi, Z.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Song, H.-C.

B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005).
[CrossRef]

Steier, W. H.

B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005).
[CrossRef]

Sun, H.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Tazawa, H.

B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005).
[CrossRef]

Waldron, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Xu, D. X.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Xu, S.

Yariv, A.

G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Appl. Phys. Lett.

C.-Y. Chao and L. J. Guo, “Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators,” Appl. Phys. Lett. 84(14), 2479–2481 (2004).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[CrossRef]

Electron. Lett.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005).
[CrossRef]

Y. Chung, D.-G. Kim, and N. Dagli, “Widely tunable coupled-ring reflector laser diode,” IEEE Photon. Technol. Lett. 17(9), 1773–1775 (2005).
[CrossRef]

G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17(2), 390–392 (2005).
[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

IEEE Sens. J.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. Micromech. Microeng.

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Sens. Actuators B Chem.

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
[CrossRef]

Sensors

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007).
[CrossRef]

Other

D. R. Lide, “Concentrative Properties of Aqueous Solutions,” in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008) (CRC Press/Taylorand Francis, Boca Raton, FL., 2007), pp. 2640–2640.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Microscopic images of a fabricated device. (a) Full view. (b) Detail of the coupler region and (c) the Y junction region. The radius of circular ring is 200 μm.

Fig. 2
Fig. 2

Setup for the reflection spectrum and biochemical sensing measurements.

Fig. 3
Fig. 3

Measured reflection spectra of the devices with different coupling gap sizes. All the ring resonators are circular in shape with radius of 200 μm.

Fig. 4
Fig. 4

Resonant wavelength as functions of the NaCl solution concentration and refractive index.

Fig. 5
Fig. 5

Theoretical transmission spectra of the two designs of microring reflectors. (a) The original design shown in Fig. 1. (b) The design with a doubly coupled ring resonator. α = |t| = 0.8 for both designs.

Fig. 6
Fig. 6

A multiplexed sensor head with microring elements of different detection capabilities.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IrIi=IbIa=α2+|t|22α|t|cos(θ+ϕt)1+α2|t|22α|t|cos(θ+ϕt)

Metrics