Abstract

A real-time 512-element photoacoustic tomography system for small animal imaging using a ring ultrasound array has been developed. The system, based upon a 5 MHz transducer array formed along a 50 mm circular aperture, achieves sub-200 micron lateral resolution over a 2 cm disk-shaped region. Corresponding elevation resolutions of 0.6 to 2.5 mm over the central volume enable depth-resolved 3D tomographic imaging with linear translation. Using 8:1 electronic multiplexing, imaging at up to 8 frame/sec is demonstrated for both dynamic phantoms and in vivo mouse and brain samples. The real-time, full 2D tomographic capability of the system paves the way for functional photoacoustic tomographic imaging studies in small animals with sub-second time frame.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
    [CrossRef] [PubMed]
  2. R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
    [CrossRef] [PubMed]
  3. X. Wang, D. L. Chamberland, and D. A. Jamadar, “Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Opt. Lett. 32(20), 3002–3004 (2007).
    [CrossRef] [PubMed]
  4. G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).
  5. E. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
    [CrossRef]
  6. S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
    [CrossRef] [PubMed]
  7. S. A. Ermilov, R. Gharieb, A. Conjusteau, and A. A. Oraevsky, “Hybrid optoacoustic and ultrasonic imaging system for detection of prostate malignancies,” Proc. SPIE 6856, 68560T (2008).
  8. R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
    [CrossRef] [PubMed]
  9. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
    [CrossRef] [PubMed]
  10. S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
    [CrossRef]
  11. B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
    [CrossRef] [PubMed]
  12. Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
    [CrossRef] [PubMed]
  13. S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
    [CrossRef] [PubMed]
  14. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
    [CrossRef] [PubMed]
  15. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
    [CrossRef] [PubMed]
  16. J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).
  17. J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,” Med. Biol. Eng. Comput. 34, 351–353 (1996).
  18. J. Gamelin, A. Aguire, A. Maurudis, F. Huang, D. Castillo, L. H. V. Wang, and Q. Zhu, Photoacoustic Imaging and Spectroscopy (Taylor and Francis, 2008), Chap. 25.
  19. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1 Pt 2), 016706 (2005).
    [CrossRef] [PubMed]
  20. M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5 Pt 2), 056605 (2003).
    [CrossRef] [PubMed]
  21. J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).
  22. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  23. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004).
    [CrossRef] [PubMed]
  24. X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

2009 (4)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).

X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

2008 (4)

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

S. A. Ermilov, R. Gharieb, A. Conjusteau, and A. A. Oraevsky, “Hybrid optoacoustic and ultrasonic imaging system for detection of prostate malignancies,” Proc. SPIE 6856, 68560T (2008).

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[CrossRef] [PubMed]

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

2007 (6)

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
[CrossRef] [PubMed]

S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
[CrossRef]

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

E. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

X. Wang, D. L. Chamberland, and D. A. Jamadar, “Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Opt. Lett. 32(20), 3002–3004 (2007).
[CrossRef] [PubMed]

2006 (1)

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1 Pt 2), 016706 (2005).
[CrossRef] [PubMed]

2004 (2)

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004).
[CrossRef] [PubMed]

2003 (2)

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5 Pt 2), 056605 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

1996 (1)

J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,” Med. Biol. Eng. Comput. 34, 351–353 (1996).

Aguirre, A.

X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Alyamov, S.

S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
[CrossRef]

Beard, P.

E. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Beard, P. C.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Bitton, R.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

Bornhop, D. J.

Brands, P. J.

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[CrossRef] [PubMed]

Castillo, D.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Chamberland, D. L.

Chen, Q.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

Conjusteau, A.

S. A. Ermilov, R. Gharieb, A. Conjusteau, and A. A. Oraevsky, “Hybrid optoacoustic and ultrasonic imaging system for detection of prostate malignancies,” Proc. SPIE 6856, 68560T (2008).

Emelianov, S.

S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
[CrossRef]

Ermilov, S. A.

S. A. Ermilov, R. Gharieb, A. Conjusteau, and A. A. Oraevsky, “Hybrid optoacoustic and ultrasonic imaging system for detection of prostate malignancies,” Proc. SPIE 6856, 68560T (2008).

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Gamelin, J.

X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Gharieb, R.

S. A. Ermilov, R. Gharieb, A. Conjusteau, and A. A. Oraevsky, “Hybrid optoacoustic and ultrasonic imaging system for detection of prostate malignancies,” Proc. SPIE 6856, 68560T (2008).

Guo, P.

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

Huang, F.

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Jamadar, D. A.

Jensen, J. A.

J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,” Med. Biol. Eng. Comput. 34, 351–353 (1996).

Karpiouk, A.

S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
[CrossRef]

Kharine, A.

S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

Kolkman, R. G.

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[CrossRef] [PubMed]

Ku, G.

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Lao, Y.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
[CrossRef] [PubMed]

Laufer, J.

E. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Laufer, J. G.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Li, M. L.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Lungu, G. F.

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

Mallidi, S.

S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
[CrossRef]

Manohar, S.

S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

Maslov, K.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Maurudis, A.

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Oh, J. T.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, R. Gharieb, A. Conjusteau, and A. A. Oraevsky, “Hybrid optoacoustic and ultrasonic imaging system for detection of prostate malignancies,” Proc. SPIE 6856, 68560T (2008).

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Park, S.

S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
[CrossRef]

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Shung, K. K.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

Steenbergen, W.

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

Stoica, G.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Tan, Y.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

van Hespen, J. C.

S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

van Leeuwen, T. G.

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

Wang, L. H. V.

J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

Wang, L. V.

X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1 Pt 2), 016706 (2005).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5 Pt 2), 056605 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, X.

Wang, Y.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Wegiel, M. A.

Xiang, L.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
[CrossRef] [PubMed]

Xie, X.

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xing, D.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
[CrossRef] [PubMed]

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1 Pt 2), 016706 (2005).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5 Pt 2), 056605 (2003).
[CrossRef] [PubMed]

Yang, S.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
[CrossRef] [PubMed]

Yang, X.

X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

Yin, B.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

Zemp, R. J.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

Zeng, Y.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

Zhang, E.

E. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Zhang, E. Z.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Zhang, H. F.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Zhou, Q.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
[CrossRef] [PubMed]

Zhu, Q.

J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[CrossRef] [PubMed]

Int. J. Oncol. (1)

G. F. Lungu, M. L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

J. Biomed. Opt. (4)

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12(1), 010501 (2007).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13(2), 024007 (2008).
[CrossRef] [PubMed]

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,” Med. Biol. Eng. Comput. 34, 351–353 (1996).

Med. Phys. (1)

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34(8), 3294–3301 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (4)

S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[CrossRef] [PubMed]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Biol. 49(7), 1339–1346 (2004).
[CrossRef] [PubMed]

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1 Pt 2), 016706 (2005).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5 Pt 2), 056605 (2003).
[CrossRef] [PubMed]

Proc. SPIE (6)

J. Gamelin, A. Maurudis, A. Aguirre, L. H. V. Wang, and Q. Zhu, “Improvements in time resolution of Tomographic Photoacoustic Imaging using a priori Information for Multiplexed Systems,” Proc. SPIE 7177, 49 (2009).

X. Yang, L. V. Wang, A. Maurudis, J. Gamelin, and A. Aguirre, “Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer,” Proc. SPIE 7177, 118–122 (2009).

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. H. V. Wang, and Q. Zhu, “A fast 512-element ring array photoacoustic imaging system for small animals,” Proc. SPIE 7177, 70 (2009).

S. A. Ermilov, R. Gharieb, A. Conjusteau, and A. A. Oraevsky, “Hybrid optoacoustic and ultrasonic imaging system for detection of prostate malignancies,” Proc. SPIE 6856, 68560T (2008).

S. Park, S. Mallidi, A. Karpiouk, S. Alyamov, and S. Emelianov, “Photoacoustic imaging using array transducer,” Proc. SPIE 6437, 643714 (2007).
[CrossRef]

E. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Other (1)

J. Gamelin, A. Aguire, A. Maurudis, F. Huang, D. Castillo, L. H. V. Wang, and Q. Zhu, Photoacoustic Imaging and Spectroscopy (Taylor and Francis, 2008), Chap. 25.

Supplementary Material (1)

» Media 1: AVI (659 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram (a) and photograph (b) of ring photoacoustic system. Photograph (c) of mouse within 50 mm transducer aperture.

Fig. 2
Fig. 2

(a) Measured and theoretical resolution versus distance from the center of the transducer. (b) Measured and simulated response vs. distance from the transducer center. (c) Simulated cross-sectional view of spatial response with location for a radial cut dividing the transducer into two halves. The locations of the transducer elements capping the ends of the region are indicated for reference.

Fig. 3
Fig. 3

Ex vivo images of rat brain at two depths spanning 4 mm. Image (a) and photograph (b) of surface vascularization. (c) Image at 4 mm below (a). Note the larger size of the brain at this level and the orbits of the eyes. (d) Photograph of basal surface annotated with features visible in photoacoustic image (c).

Fig. 4
Fig. 4

Cross-sectional images of mouse brain vasculature at various depths.

Fig. 5
Fig. 5

In vivo photoacoustic images of brain vasculature for two mice with (a) dorsal and (b) ventral head tilt emphasizing hemispherical (a) and cerebellar vasculature (b).

Fig. 6
Fig. 6

Photoacoustic images of dynamic ink flow through a 1 mm diameter tube (Media 1).

Fig. 7
Fig. 7

Images of dynamic ink flow through 580 micron inner diameter tubing over a three second interval. The inner two tubes were held constant while ink was injected through the outer ring.

Fig. 8
Fig. 8

Time-resolved imaging of mouse brain vasculature with fast wavelength scanning. The wavelength was swept from 710 nm to 900 nm over 30 seconds.

Metrics