Abstract

We have recently proposed an innovative microstructure for a monolithically integrated surface plasmon resonance (SPR) device comprising a metal coated SiO2 layer deposited atop a photoluminescence emitting quantum well (QW) wafer. The functioning of such a device is based on the uncollimated and incoherent emission of semiconductors. We discuss the results of our calculations aimed at the description of SPs coupling in QW semiconductor-based SPR architectures designed for biosensing applications. Two SPs modes could be coupled in the 0th diffraction order where the injected in-plane wavevectors from the QW structures can always meet SPR conditions. This results in increasing the SPs coupling efficiency up to 100 times higher than in case of indirect SPs injection.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. M. Schasfoort, and A. J. Tudos, Handbook of surface plasmon resonance (R. Soc. of Chem., Cambridge, 2008).
    [CrossRef]
  2. H. Raether, "Surface-Plasmons on smooth and rough surfaces and on gratings," Springer Tracts in Mod.Phys. 111, 1-133 (1988).
  3. D. Lepage, and J. J. Dubowski, "Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures," Appl. Phys. Lett. 91, 163106 (2007).
    [CrossRef]
  4. L. F. Li, "Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors," J. Opt. A: Pure Appl. Opt. 5, 345-355 (2003)
    [CrossRef]
  5. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings-enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  6. J. Hench, and Z. Strakos, "The RCWA method - a case study with open questions and perspectives of algebraic computations," to appear in ETNA (2009).
  7. L. Mashev, and E. Popov, "Reflection gratings in conical diffraction mounting," J. Opt. 18, 3-7 (1987).
    [CrossRef]
  8. E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
    [CrossRef]
  9. D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
    [CrossRef]
  10. G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
    [CrossRef]
  11. E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).
  12. M.-L. Thèye, "Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films," Phys. Rev. B 2, 3060-3078 (1970).
    [CrossRef]
  13. S. Patskovsky, M. Vallieres, M. Maisonneuve, I. H. Song, M. Meunier, and A. V. Kabashin, "Designing efficient zero calibration point for phase-sensitive surface plasmon resonance biosensing," Opt. Express 17, 2255-2263 (2009).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

D. Lepage, and J. J. Dubowski, "Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures," Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

2006 (1)

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
[CrossRef]

2003 (2)

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

L. F. Li, "Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors," J. Opt. A: Pure Appl. Opt. 5, 345-355 (2003)
[CrossRef]

2002 (1)

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

1995 (1)

1988 (1)

H. Raether, "Surface-Plasmons on smooth and rough surfaces and on gratings," Springer Tracts in Mod.Phys. 111, 1-133 (1988).

1987 (1)

L. Mashev, and E. Popov, "Reflection gratings in conical diffraction mounting," J. Opt. 18, 3-7 (1987).
[CrossRef]

1970 (1)

M.-L. Thèye, "Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films," Phys. Rev. B 2, 3060-3078 (1970).
[CrossRef]

Amans, D.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

Callard, S.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

Cazzanelli, M.

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Dubowski, J. J.

D. Lepage, and J. J. Dubowski, "Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures," Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

Franzo, G.

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Fujii, M.

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
[CrossRef]

Gaburro, Z.

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Gagnaire, A.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Hayashi, S.

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
[CrossRef]

Hench, J.

J. Hench, and Z. Strakos, "The RCWA method - a case study with open questions and perspectives of algebraic computations," to appear in ETNA (2009).

Huisken, F.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

Iacona, F.

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Joseph, J.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

Kabashin, A. V.

Ledoux, G.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

Lepage, D.

D. Lepage, and J. J. Dubowski, "Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures," Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

Li, L. F.

L. F. Li, "Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors," J. Opt. A: Pure Appl. Opt. 5, 345-355 (2003)
[CrossRef]

Maisonneuve, M.

Mashev, L.

L. Mashev, and E. Popov, "Reflection gratings in conical diffraction mounting," J. Opt. 18, 3-7 (1987).
[CrossRef]

Meunier, M.

Miura, S.

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
[CrossRef]

Moharam, M. G.

Nakamura, T.

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
[CrossRef]

Patskovsky, S.

Pavesi, L.

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Pommet, D. A.

Popov, E.

L. Mashev, and E. Popov, "Reflection gratings in conical diffraction mounting," J. Opt. 18, 3-7 (1987).
[CrossRef]

Prakash, G. V.

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Priolo, F.

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Raether, H.

H. Raether, "Surface-Plasmons on smooth and rough surfaces and on gratings," Springer Tracts in Mod.Phys. 111, 1-133 (1988).

Song, I. H.

Strakos, Z.

J. Hench, and Z. Strakos, "The RCWA method - a case study with open questions and perspectives of algebraic computations," to appear in ETNA (2009).

Takeda, E.

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
[CrossRef]

Thèye, M.-L.

M.-L. Thèye, "Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films," Phys. Rev. B 2, 3060-3078 (1970).
[CrossRef]

Vallieres, M.

Appl. Phys. Lett. (2)

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, "Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals," Appl. Phys. Lett. 89, 101907 (2006).
[CrossRef]

D. Lepage, and J. J. Dubowski, "Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures," Appl. Phys. Lett. 91, 163106 (2007).
[CrossRef]

J. Appl. Phys. (1)

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux, and F. Huisken, "Ellipsometric study of silicon nanocrystal optical constants," J. Appl. Phys. 93, 4173-4179 (2003).
[CrossRef]

J. Mod. Opt. (1)

G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

J. Opt. (1)

L. Mashev, and E. Popov, "Reflection gratings in conical diffraction mounting," J. Opt. 18, 3-7 (1987).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

L. F. Li, "Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors," J. Opt. A: Pure Appl. Opt. 5, 345-355 (2003)
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Phys. (1)

H. Raether, "Surface-Plasmons on smooth and rough surfaces and on gratings," Springer Tracts in Mod.Phys. 111, 1-133 (1988).

Phys. Rev. B (1)

M.-L. Thèye, "Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films," Phys. Rev. B 2, 3060-3078 (1970).
[CrossRef]

Other (3)

R. B. M. Schasfoort, and A. J. Tudos, Handbook of surface plasmon resonance (R. Soc. of Chem., Cambridge, 2008).
[CrossRef]

J. Hench, and Z. Strakos, "The RCWA method - a case study with open questions and perspectives of algebraic computations," to appear in ETNA (2009).

E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The embedded semiconductor (εs) emits an uncollimated and usually incoherent light. At fixed energy, the DMD interface (εd2 - εm - εd1) is exposed to a continuous range of wavevector excitation, coupling all the SPR modes possibly supported by the architecture. Since the whole semiconductor layer (εs) emits in the depicted manner, a constant light intensity is measured in the real space, while all SPs modes can be excited in the Fourier space (k). If the light source emits a broad energy spectrum, a continuum of dispersion relations ω(k) can be met.

Fig. 2.
Fig. 2.

Calculated dispersion relation ω(k) of the Si-NCs architecture in the 1st diffraction order as observed in the far-field. White lines follow the analytical SPR peaks from the Au/Si-NCs SPP, the Au/PR SPs and the TE0 mode. White dots are experimental results from [8]. The intensity is modulated by the Si-NCs emission and normalized to one.

Fig. 3.
Fig. 3.

(a) Calculated dispersion relation ω(k) for the GaAs-AlGaAs architecture in the 1st diffraction order as observed in the far-field in P-Polarization. White lines follow the analytical SPR peaks from the Au/SiO2 (326nm) SPP and the Au/PR (100nm)-Air SPs. Fig. 3(b) shows the calculated PL intensity in the far-field in P-Polarization with all diffraction orders summed. Intensities are not modulated by QW PL spectra but still normalized to one. Fig. 3(c) compares the measured normalized difference in total QW PL signal [3] with the predicted signal as calculated.

Fig. 4.
Fig. 4.

S/N ratio in total PL for different architectures taken at λ=820nm: In solid red is the Si-NCs setup with εd2d1≥εSource, in dashed green is the QW setup with εSourced2≈εd1 and in dash-dotted blue is a QW setup with εSourced2d1. SP1 corresponds to the exposed surface (Air or PR) and SP2 to the enclosed interface (Si-NCs, SiO2 or Si3N4). The solid red line is multiplied by 1.15 for clarity.

Metrics