Abstract

The confinement and controlled movement of metal nanoparticles and nanorods is an emergent area within optical micromanipulation. In this letter we experimentally realise a novel trapping geometry near the plasmon resonance using an annular light field possessing a helical phasefront that confines the nanoparticle to the vortex core (dark) region. We interpret our data with a theoretical framework based upon the Maxwell stress tensor formulation to elucidate the total forces upon nanometric particles near the particle plasmon resonance. Rotation of the particle due to orbital angular momentum transfer is observed. This geometry may have several advantages for advanced manipulation of metal nanoparticles.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  2. A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
    [CrossRef] [PubMed]
  3. F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639-2641 (2006).
    [CrossRef] [PubMed]
  4. A. Ashkin, "Applications of laser radiation pressure," Science 210, 1081-1088 (1980).
    [CrossRef] [PubMed]
  5. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
    [CrossRef] [PubMed]
  6. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold Nanoparticles," Nano Lett. 5, 1937-1942 (2005).
    [CrossRef] [PubMed]
  7. J. Prikulis, F. Svedberg, and M. Käll, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Lett. 4, 115-118 (2004).
    [CrossRef]
  8. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, "Optical trapping and alignment of single gold nanorods using plasmon resonances," Opt. Lett. 31, 2075-2077 (2006).
    [CrossRef] [PubMed]
  9. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, "Plasmon resonance-based optical trapping of single and multiple Au nanoparticles," Opt. Express 15, 12017-12029 (2007).
    [CrossRef] [PubMed]
  10. Y. Seol, A. E. Carpenter, and T. T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31, 2429-2431 (2006).
    [CrossRef] [PubMed]
  11. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre-Gaussian laser modes for studies of cold atoms," Opt. Commun. 156, 300-306 (1998).
    [CrossRef]
  12. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
    [CrossRef] [PubMed]
  13. A. T. O’Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
    [CrossRef]
  14. J. W. Goodman, Statistical Optics, (Wiley-Interscience, 1985), p. 224.
  15. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
    [CrossRef]
  16. D. S. Bradshaw and D. L. Andrews, "Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes," Opt. Lett. 30, 3039-3041 (2005).
    [CrossRef] [PubMed]
  17. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2004).
    [CrossRef] [PubMed]
  18. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focussed laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
    [CrossRef]
  19. A. Rohrbach and E. H. K. Stelzer, "Optical trapping of dielectric particles in arbitrary fields," J. Opt. Soc. Am. A 18, 839-853 (2001).
    [CrossRef]
  20. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
    [CrossRef]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006) p 404-428.
  22. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. d. Physik 4, 378-445 (1908).
  23. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
    [CrossRef]
  24. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. R. Soc. Lond. A 362, 719-737 (2004).
    [CrossRef]
  25. C. S. Adams and E. Riis, "Laser cooling and trapping of neutral atoms," Prog. Quantum Electron 21, 1-79 (1997).
    [CrossRef]
  26. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
    [CrossRef]

2007 (2)

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, "Plasmon resonance-based optical trapping of single and multiple Au nanoparticles," Opt. Express 15, 12017-12029 (2007).
[CrossRef] [PubMed]

2006 (4)

Y. Seol, A. E. Carpenter, and T. T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31, 2429-2431 (2006).
[CrossRef] [PubMed]

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639-2641 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, "Optical trapping and alignment of single gold nanorods using plasmon resonances," Opt. Lett. 31, 2075-2077 (2006).
[CrossRef] [PubMed]

2005 (2)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold Nanoparticles," Nano Lett. 5, 1937-1942 (2005).
[CrossRef] [PubMed]

D. S. Bradshaw and D. L. Andrews, "Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes," Opt. Lett. 30, 3039-3041 (2005).
[CrossRef] [PubMed]

2004 (3)

M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2004).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, and M. Käll, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Lett. 4, 115-118 (2004).
[CrossRef]

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. R. Soc. Lond. A 362, 719-737 (2004).
[CrossRef]

2003 (1)

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
[CrossRef]

2001 (1)

2000 (1)

A. T. O’Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

1998 (1)

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre-Gaussian laser modes for studies of cold atoms," Opt. Commun. 156, 300-306 (1998).
[CrossRef]

1997 (1)

C. S. Adams and E. Riis, "Laser cooling and trapping of neutral atoms," Prog. Quantum Electron 21, 1-79 (1997).
[CrossRef]

1994 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focussed laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

1980 (1)

A. Ashkin, "Applications of laser radiation pressure," Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

1979 (1)

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
[CrossRef]

1973 (1)

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

1908 (1)

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. d. Physik 4, 378-445 (1908).

Adams, C. S.

C. S. Adams and E. Riis, "Laser cooling and trapping of neutral atoms," Prog. Quantum Electron 21, 1-79 (1997).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focussed laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Andrews, D. L.

Arlt, J.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre-Gaussian laser modes for studies of cold atoms," Opt. Commun. 156, 300-306 (1998).
[CrossRef]

Ashkin, A.

A. Ashkin, "Applications of laser radiation pressure," Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focussed laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold Nanoparticles," Nano Lett. 5, 1937-1942 (2005).
[CrossRef] [PubMed]

Block, S. M.

Bradshaw, D. S.

Brevik, I.

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
[CrossRef]

Carpenter, A. E.

Chaumet, P. C.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. R. Soc. Lond. A 362, 719-737 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Clifford, M. A.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre-Gaussian laser modes for studies of cold atoms," Opt. Commun. 156, 300-306 (1998).
[CrossRef]

Courtial, J.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre-Gaussian laser modes for studies of cold atoms," Opt. Commun. 156, 300-306 (1998).
[CrossRef]

Csaki, A.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Dholakia, K.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
[CrossRef]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre-Gaussian laser modes for studies of cold atoms," Opt. Commun. 156, 300-306 (1998).
[CrossRef]

Festag, G.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Fritzsche, W.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Garwe, F.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Gordon, J. P.

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
[CrossRef]

Guffey, M. J.

Guyot-Sionnest, P.

Hakanson, U.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold Nanoparticles," Nano Lett. 5, 1937-1942 (2005).
[CrossRef] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold Nanoparticles," Nano Lett. 5, 1937-1942 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Käll, M.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639-2641 (2006).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, and M. Käll, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Lett. 4, 115-118 (2004).
[CrossRef]

Kim, H. Y.

König, K.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Li, Z.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639-2641 (2006).
[CrossRef] [PubMed]

Liu, M.

Mansuripur, M.

Maubach, G.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

McGloin, D.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
[CrossRef]

Melville, H.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
[CrossRef]

Mie, G.

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. d. Physik 4, 378-445 (1908).

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. R. Soc. Lond. A 362, 719-737 (2004).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold Nanoparticles," Nano Lett. 5, 1937-1942 (2005).
[CrossRef] [PubMed]

Padgett, M. J.

A. T. O’Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Pelton, M.

Perkins, T. T.

Pesic, J.

Prikulis, J.

J. Prikulis, F. Svedberg, and M. Käll, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Lett. 4, 115-118 (2004).
[CrossRef]

Rahmani, A.

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. R. Soc. Lond. A 362, 719-737 (2004).
[CrossRef]

Riemann, I.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Riis, E.

C. S. Adams and E. Riis, "Laser cooling and trapping of neutral atoms," Prog. Quantum Electron 21, 1-79 (1997).
[CrossRef]

Rogobete, L.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Rohrbach, A.

Sandoghdar, V.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focussed laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Scherer, N. F.

Seol, Y.

Sibbett, W.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
[CrossRef]

Smith, G.

Spalding, G. C.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Steinbrück, A.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Stelzer, E. H. K.

Svedberg, F.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639-2641 (2006).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, and M. Käll, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Lett. 4, 115-118 (2004).
[CrossRef]

Svoboda, K.

Toussaint, K. C.

Weise, A.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Xu, H.

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639-2641 (2006).
[CrossRef] [PubMed]

Ann. d. Physik (1)

G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. d. Physik 4, 378-445 (1908).

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focussed laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (4)

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, "A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nano Lett. 7, 247-253 (2007).
[CrossRef] [PubMed]

F. Svedberg, Z. Li, H. Xu, and M. Käll, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Lett. 6, 2639-2641 (2006).
[CrossRef] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold Nanoparticles," Nano Lett. 5, 1937-1942 (2005).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, and M. Käll, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Lett. 4, 115-118 (2004).
[CrossRef]

Opt. Commun. (3)

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre-Gaussian laser modes for studies of cold atoms," Opt. Commun. 156, 300-306 (1998).
[CrossRef]

A. T. O’Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Three-dimensional arrays of optical bottle beams," Opt. Commun. 225, 215-222 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phil. Trans. R. Soc. Lond. A (1)

M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. R. Soc. Lond. A 362, 719-737 (2004).
[CrossRef]

Phys. Rep. (1)

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979).
[CrossRef]

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
[CrossRef]

Phys. Rev. B. (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Prog. Quantum Electron (1)

C. S. Adams and E. Riis, "Laser cooling and trapping of neutral atoms," Prog. Quantum Electron 21, 1-79 (1997).
[CrossRef]

Science (1)

A. Ashkin, "Applications of laser radiation pressure," Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006) p 404-428.

J. W. Goodman, Statistical Optics, (Wiley-Interscience, 1985), p. 224.

Supplementary Material (2)

» Media 1: AVI (3387 KB)     
» Media 2: AVI (1171 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(top) Spatial data points tracing the movement of a single gold nanoparticle confined to Laguerre-Gaussian beam with =2 and various wavelengths a) 488nm at 120mW, b) 514nm at 90mW and c) 528nm at 90mW laser power measured at the back aperture of the trapping objective. (bottom) The plots represent the average visit duration of a gold nanoparticle at a pixel site with certain intensity. Higher numbers correspond to a higher intensity. The histograms clearly show the nanoparticle’s preference to reside within the regions of lowest intensity. The escape probability due to Brownian motion and radial acceleration because of the angular momentum is higher for lower laser powers. One pixel equals 200nm, thus the particles are confined to a region with a radius of 0.9 µm to 1.4 µm in our experiment.

Fig. 2.
Fig. 2.

Three subsequent pictures illustrating the rotation of two trapped 100nm gold nanoparticles due to orbital angular momentum (OAM) transfer. The particles are confined to the Laguerre-Gaussian beam but the strong “binding” repulsion between the spheres does not allow them to interact in the middle of the dark core. Together they rotate clockwise, retaining a separation angle of 180°. Displayed in row (a) are the noise-reduced movie stills out of a video sequence that are further processed with a background subtraction in row (b). [Media 1][Media 2]

Fig. 3.
Fig. 3.

(a). The real part of the polarisability α’ of a 100nm gold sphere calculated with the scattering Cscat and absorption cross section Cabs from Mie theory (see equation 4) and permittivity values from Johnson et al. [23]. α’ and thus Fgrad is decreased by 30% and 70% for 488nm, 514nm and about the same at 528nm as compared to 1064nm. (b) Cscat and Cabs of a 100nm gold sphere calculated with Mie theory plotted against the wavelength of excitation. The increase of Cscat at the applied wavelengths of 488nm, 514nm and 528nm as compared to 1064nm is evident

Fig. 4.
Fig. 4.

The lines correspond to the optical trapping potential (work) in the radial direction for 50nm, 70nm, 100nm and 250nm gold particles in an LG beam (=2) 1µm after the focal plane. The grey shaded area denotes the LG beam intensity profile. The LG beam has a waist of w0=1000nm, 100mW power and a wavelength of 528nm. The work is in units of kbT where kb is the Boltzmann constant and T the temperature of the bath (T=20°C).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F grad = 1 2 α ( ω ) E 2 ,
F scat = n c S C scat ,
F abs = n c S C abs ,
C scat = k 4 6 π ε 0 2 α ( ω ) 2 ,
C abs = k ε 0 α ( ω ) ,
T = = D E * + B H * 1 2 ( D E * + B H * ) ,
T ij = ε r ε 0 E i E j * + µ r µ 0 H i H j * 1 2 k ( ε r ε 0 E k E k * + µ r µ 0 H k H k * ) .
F = 1 2 Re ( s T = n ds ) ,

Metrics