Abstract

We explore a method to quantitatively assess the ability of in vivo autofluorescence as a means to quantify the progression of longer periods of renal warm ischemia and reperfusion in a rat model. The method employs in vivo monitoring of tissue autofluorescence arising mainly from NADH as a means to probe the organ’s function and response to reperfusion. Clinically relevant conditions are employed that include exposure of the kidney to ischemia on the order of tens of minutes to hours. The temporal profile during the reperfusion phase of the autofluorescence intensity averaged over an area as large as possible was modeled as the product of two independent exponential functions. Time constants were extracted from fits to the experimental data and their average values were found to increase with injury time.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
    [CrossRef] [PubMed]
  2. A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
    [CrossRef] [PubMed]
  3. T. Sommer and J. F. Larsen, "Detection of intestinal ischemia using a microdialysis technique in an animal model," World J. Surg. 27, 416-420 (2003).
    [CrossRef] [PubMed]
  4. D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
    [PubMed]
  5. S. G. Simonson and C. A. Piantadosi, "Near-infrared spectroscopy: Clinical applications," Crit. Care Clin. 12,1019 (1996).
    [CrossRef] [PubMed]
  6. B. Chance, "Spectrophotometry of intracellular respiratory pigments," Science 120, 767-775 (1954).
    [CrossRef] [PubMed]
  7. S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).
  8. A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
    [CrossRef] [PubMed]
  9. G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
    [PubMed]
  10. A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003).
    [CrossRef]
  11. J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
    [CrossRef]
  12. B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).
  13. H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry 52A, 77-89 (2003).
    [CrossRef]
  14. F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
    [CrossRef] [PubMed]
  15. A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
    [CrossRef] [PubMed]
  16. T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991).
    [CrossRef] [PubMed]
  17. J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
    [CrossRef] [PubMed]
  18. A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
    [CrossRef] [PubMed]
  19. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).
    [CrossRef] [PubMed]
  20. R. R. Alfano and Y. Yang, "Stokes shift emission of human tissue and key biomolecules," IEEE J. Quantum Electron. 9, 148-153 (2003).
    [CrossRef]
  21. A. P. Michalopoulou, J. T. Fitzgerald, C. Troppmann, and S. G. Demos, "Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties," Appl. Opt. 44, 2024-2032 (2005).
    [CrossRef] [PubMed]
  22. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, (SPIE Press, Bellingham, WA, 2000).
  23. M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
    [CrossRef] [PubMed]
  24. P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
    [CrossRef] [PubMed]
  25. K. Togashi, "Rapid restoration of injured kidney after immediate removal of opposite normal kidney," Acta Pathol. Jpn. 32, 749-757 (1982).

2005 (2)

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

A. P. Michalopoulou, J. T. Fitzgerald, C. Troppmann, and S. G. Demos, "Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties," Appl. Opt. 44, 2024-2032 (2005).
[CrossRef] [PubMed]

2003 (6)

R. R. Alfano and Y. Yang, "Stokes shift emission of human tissue and key biomolecules," IEEE J. Quantum Electron. 9, 148-153 (2003).
[CrossRef]

H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry 52A, 77-89 (2003).
[CrossRef]

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
[CrossRef] [PubMed]

A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003).
[CrossRef]

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

T. Sommer and J. F. Larsen, "Detection of intestinal ischemia using a microdialysis technique in an animal model," World J. Surg. 27, 416-420 (2003).
[CrossRef] [PubMed]

2002 (2)

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

1999 (1)

J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
[CrossRef] [PubMed]

1996 (1)

S. G. Simonson and C. A. Piantadosi, "Near-infrared spectroscopy: Clinical applications," Crit. Care Clin. 12,1019 (1996).
[CrossRef] [PubMed]

1995 (1)

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

1991 (1)

T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991).
[CrossRef] [PubMed]

1984 (1)

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

1983 (1)

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

1982 (2)

K. Togashi, "Rapid restoration of injured kidney after immediate removal of opposite normal kidney," Acta Pathol. Jpn. 32, 749-757 (1982).

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

1981 (1)

D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
[PubMed]

1977 (1)

F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

1971 (1)

S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).

1965 (1)

B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).

1962 (1)

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).
[CrossRef] [PubMed]

1954 (1)

B. Chance, "Spectrophotometry of intracellular respiratory pigments," Science 120, 767-775 (1954).
[CrossRef] [PubMed]

Aguilo, J.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Ahmadi, R.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Alfano, R. R.

R. R. Alfano and Y. Yang, "Stokes shift emission of human tissue and key biomolecules," IEEE J. Quantum Electron. 9, 148-153 (2003).
[CrossRef]

Andersson, A.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Bergsten, P.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Bering, T. G.

D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
[PubMed]

Berthier, J.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Birrell, C. S.

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

Busch, C.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Carlsson, P. O.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Cedrone, F. A.

D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
[PubMed]

Chance, B.

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).
[CrossRef] [PubMed]

B. Chance, "Spectrophotometry of intracellular respiratory pigments," Science 120, 767-775 (1954).
[CrossRef] [PubMed]

Cohen, P.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).
[CrossRef] [PubMed]

Cornillault, J.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Demos, S. G.

A. P. Michalopoulou, J. T. Fitzgerald, C. Troppmann, and S. G. Demos, "Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties," Appl. Opt. 44, 2024-2032 (2005).
[CrossRef] [PubMed]

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

Dennis, M. F.

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

Eklund, T.

T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991).
[CrossRef] [PubMed]

Everett, S. A.

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

Fitzgerald, J. T.

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

A. P. Michalopoulou, J. T. Fitzgerald, C. Troppmann, and S. G. Demos, "Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties," Appl. Opt. 44, 2024-2032 (2005).
[CrossRef] [PubMed]

Gebhard, M. M.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Godard, B.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Golling, M

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Gomez, R.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Goodman, J. C.

J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
[CrossRef] [PubMed]

Gopinath, S. P.

J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
[CrossRef] [PubMed]

Gorbach, A.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
[CrossRef] [PubMed]

Hale, D. A.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
[CrossRef] [PubMed]

Hashemi, B.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Herman, P.

H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry 52A, 77-89 (2003).
[CrossRef]

Hill, S. A.

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

Hillered, L.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991).
[CrossRef] [PubMed]

Hotter, G.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Howden, B. O.

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

Hurford, W. E.

D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
[PubMed]

Ivorra, A.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Jablonski, P.

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

Jamieson, D.

B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).

Jansson, L.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Jobsis, F.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).
[CrossRef] [PubMed]

Jobsis, F. F.

F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

Kaede, K.

S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).

Kirk, A. D.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
[CrossRef] [PubMed]

Kiuru, A.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Klar, E.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Kobayashi, S.

S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).

Kraus, T.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Lakowicz, J. R.

H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry 52A, 77-89 (2003).
[CrossRef]

Larossa, D. D.

D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
[PubMed]

Larsen, J. F.

T. Sommer and J. F. Larsen, "Detection of intestinal ischemia using a microdialysis technique in an animal model," World J. Surg. 27, 416-420 (2003).
[CrossRef] [PubMed]

Lin, H. J.

H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry 52A, 77-89 (2003).
[CrossRef]

Lin, J.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Lopez-Martim, J.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Luger-Hamer, M.

A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003).
[CrossRef]

Marshall, V. C.

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

Mayevsky, A.

A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003).
[CrossRef]

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

Mehrabi, A.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Michalopoulou, A. P.

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

A. P. Michalopoulou, J. T. Fitzgerald, C. Troppmann, and S. G. Demos, "Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties," Appl. Opt. 44, 2024-2032 (2005).
[CrossRef] [PubMed]

Muffat-Joly, M.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Nakache, R.

A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003).
[CrossRef]

Nishiki, K.

S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).

Noguera, N.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Nordin, A.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Ogata, E.

S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).

Olsson, R.

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

Palacios, L.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Parkins, C. S.

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

Piantadosi, C. A.

S. G. Simonson and C. A. Piantadosi, "Near-infrared spectroscopy: Clinical applications," Crit. Care Clin. 12,1019 (1996).
[CrossRef] [PubMed]

Pivetti, C. D.

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

Pocidalo, J.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Rae, D. A.

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

Raman, R. N.

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

Raynal, E.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Renault, G.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Robertson, C. S.

J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
[CrossRef] [PubMed]

Schoener, B.

B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).
[CrossRef] [PubMed]

Silverman, D. G.

D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
[PubMed]

Simonson, S. G.

S. G. Simonson and C. A. Piantadosi, "Near-infrared spectroscopy: Clinical applications," Crit. Care Clin. 12,1019 (1996).
[CrossRef] [PubMed]

Simonton, D.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
[CrossRef] [PubMed]

Sinet, M.

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Sola, A.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Sommer, T.

T. Sommer and J. F. Larsen, "Detection of intestinal ischemia using a microdialysis technique in an animal model," World J. Surg. 27, 416-420 (2003).
[CrossRef] [PubMed]

Sonn, J.

A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003).
[CrossRef]

Stratford, M. R. L.

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

Stubbs, M.

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

Swanson, S. J.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
[CrossRef] [PubMed]

Tange, J.

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

Togashi, K.

K. Togashi, "Rapid restoration of injured kidney after immediate removal of opposite normal kidney," Acta Pathol. Jpn. 32, 749-757 (1982).

Troppmann, C.

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

A. P. Michalopoulou, J. T. Fitzgerald, C. Troppmann, and S. G. Demos, "Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties," Appl. Opt. 44, 2024-2032 (2005).
[CrossRef] [PubMed]

Ungerstedt, U.

T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991).
[CrossRef] [PubMed]

Uzura, M.

J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
[CrossRef] [PubMed]

Valadka, A. B.

J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
[CrossRef] [PubMed]

Villa, R.

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

Volkl, A.

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Wahlberg, J.

T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991).
[CrossRef] [PubMed]

Williamson, J. R.

B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).

Yang, Y.

R. R. Alfano and Y. Yang, "Stokes shift emission of human tissue and key biomolecules," IEEE J. Quantum Electron. 9, 148-153 (2003).
[CrossRef]

Acta Pathol. Jpn. (1)

K. Togashi, "Rapid restoration of injured kidney after immediate removal of opposite normal kidney," Acta Pathol. Jpn. 32, 749-757 (1982).

Acta Physiol. Scand. (1)

T. Eklund, J. Wahlberg, U. Ungerstedt, and L. Hillered, "Interstitial lactate, inosine, and hypoxanthine in rat kidney during normothermic ischaemia and recirculation," Acta Physiol. Scand. 143, 279-286 (1991).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

G. Renault, E. Raynal, M. Sinet, M. Muffat-Joly, J. Berthier, J. Cornillault, B. Godard, and J. Pocidalo, "In situ double-beam NADH laser fluorimetry: choice of a reference wavelength," Am. J. Physiol. 246, H491-H499 (1984).
[PubMed]

Am. J. Transplant. (1)

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, "Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging," Am. J. Transplant. 3, 988-993 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biochem. Z. (1)

B. Chance, J. R. Williamson, D. Jamieson, and B. Schoener, "Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart" Biochem. Z. 341, 357-377 (1965).

Crit. Care Clin. (1)

S. G. Simonson and C. A. Piantadosi, "Near-infrared spectroscopy: Clinical applications," Crit. Care Clin. 12,1019 (1996).
[CrossRef] [PubMed]

Crit. Care Med. (1)

J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, "Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis," Crit. Care Med. 27, 1965-1973 (1999).
[CrossRef] [PubMed]

Cytometry (1)

H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry 52A, 77-89 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Alfano and Y. Yang, "Stokes shift emission of human tissue and key biomolecules," IEEE J. Quantum Electron. 9, 148-153 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. Kobayashi, K. Nishiki, K. Kaede, and E. Ogata, "Optical consequences of blood substitution on tissue oxidation-reduction state microfluorometry," J. Appl. Phys. 31,93-96 (1971).

J. Biomed. Opt. (1)

J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10, 044018 (2005).
[CrossRef]

J. Chromatogr. A (1)

M. R. L. Stratford, C. S. Parkins, S. A. Everett, M. F. Dennis, M. Stubbs, and S. A. Hill, "Analysis of the acidic microenvironment in murine tumors by high-performance ion chromatography," J. Chromatogr. A 706, 459-462 (1995).
[CrossRef] [PubMed]

J. Surg. Res. (1)

A. Mehrabi, M Golling, C. Busch, B. Hashemi, R. Ahmadi, A. Volkl, M. M. Gebhard, E. Klar, and T. Kraus, "Experimental monitoring of hepatic metabolism by microdialysis glucose, lactate, and glutamate during surgical preparation of the liver hilus," J. Surg. Res. 105, 128-135 (2002).
[CrossRef] [PubMed]

Science (4)

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).
[CrossRef] [PubMed]

F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982).
[CrossRef] [PubMed]

B. Chance, "Spectrophotometry of intracellular respiratory pigments," Science 120, 767-775 (1954).
[CrossRef] [PubMed]

Surgery (2)

P. O. Carlsson, A. Kiuru, A. Nordin, R. Olsson, J. Lin, P. Bergsten, L. Hillered, A. Andersson, and L. Jansson, "Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule," Surgery 132, 487-494 (2002).
[CrossRef] [PubMed]

D. G. Silverman, F. A. Cedrone, W. E. Hurford, T. G. Bering, and D. D. Larossa, "Monitoring tissue elimination of fluorescein with the perfusion fluorometer: a new method to assess capillary blood flow," Surgery 90,409 (1981).
[PubMed]

Transplant. Rev. (1)

A. Mayevsky, J. Sonn, M. Luger-Hamer, and R. Nakache, "Real-time assessment of organ vitality during the transplantation procedure," Transplant. Rev. 17, 96-116 (2003).
[CrossRef]

Transplantation (2)

A. Sola, L. Palacios, J. Lopez-Martim, A. Ivorra, N. Noguera, R. Gomez, R. Villa, J. Aguilo, and G. Hotter, "Multiparametric monitoring of ischemia-reperfusion in rat kidney: Effect of preconditioning," Transplantation 75, 744-749 (2003).
[CrossRef] [PubMed]

P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Transplantation 35, 198-204 (1983).
[CrossRef] [PubMed]

World J. Surg. (1)

T. Sommer and J. F. Larsen, "Detection of intestinal ischemia using a microdialysis technique in an animal model," World J. Surg. 27, 416-420 (2003).
[CrossRef] [PubMed]

Other (1)

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, (SPIE Press, Bellingham, WA, 2000).

Supplementary Material (2)

» Media 1: AVI (147 KB)     
» Media 2: AVI (133 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Typical signal profiles from individual rats. 150 mins. injury (asterisks) and 20 mins. injury (solid circles) exhibiting behavior 1 (A) and behavior 2 (B). The signal intensity is normalized to its pre-injury value (intensity=1 at t=0). The letters (a-d) represent characteristic features in the time-dependent signal. White light photos of injured kidneys (and corresponding normals) at the end of 150 mins. of injury which exhibited the signal profiles in (A) and (B) are shown in (C) and (D), respectively.

Fig. 2.
Fig. 2.

The autofluorescence intensity temporal profile of ex vivo kidney over 2 hours.

Fig. 3.
Fig. 3.

(A) Normalized autofluorescence spectra of a rat kidney in vivo before ischemia (solid), following 150’ of ischemia (dash-dot), and following 90’ of reperfusion (dotted). (B) (147 kB) Movie of the normalized spectrum during 150’ injury and 90’ reperfusion. (C) The ratio of the spectrum after 150’ of injury to the spectrum at the given time point into injury. (D) (133 kB) Movie of this ratio during 150’ injury and 90’ reperfusion. [Media 1][Media 2]

Fig. 4.
Fig. 4.

An example fit of the signal profile from a single rat following 50 min. injury. Relaxation (τN and τE) and delay (Δτ) time constants were extracted from the two fitting components.

Fig. 5.
Fig. 5.

Representations of ischemic kidneys (from 39 rats) based on delay and relaxation time constants extracted from data fit.

Tables (2)

Tables Icon

Table 1. Mean±SD of ΔI parameter separated by behavior type for the different injury time groups.

Tables Icon

Table 2: Statistical analysis results. On the left, average values of extracted time constants with standard deviations (and number of rats in parentheses). On the right, pairwise comparison of injury time points (20, 50, 150 minutes) using Tukey test statistic q5%=3.47. Asterisks indicate significance at the 0.05 level.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Component 1: S N = { S N 0   t r < t < Δ τ S N 0 Δ S N * ( 1 Exp ( ( t Δ τ ) τ N ) ) t > Δ τ }
Component       2 : S E = S E 0 + Δ S E * ( 1 Exp ( t τ E ) )

Metrics