Abstract

The detection of a gold nanoparticle contrast agent is demonstrated using a photothermal modulation technique and phase sensitive optical coherence tomography (OCT). A focused beam from a laser diode at 808 nm is modulated at frequencies of 500 Hz–60 kHz while irradiating a solution containing nanoshells. Because the nanoshells are designed to have a high absorption coefficient at 808 nm, the laser beam induces small-scale localized temperature oscillations at the modulation frequency. These temperature oscillations result in optical path length changes that are detected by a phase-sensitive, swept source OCT system. The OCT system uses a double-buffered Fourier domain mode locked (FDML) laser operating at a center wavelength of 1315 nm and a sweep rate of 240 kHz. High contrast is observed between phantoms containing nanoshells and phantoms without nanoshells. This technique represents a new method for detecting gold nanoparticle contrast agents with excellent signal-to-noise performance at high speeds using OCT.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1 (1997).
    [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
    [CrossRef] [PubMed]
  4. Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
    [PubMed]
  5. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003).
    [CrossRef] [PubMed]
  6. V. X. D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11 (2003).
    [CrossRef] [PubMed]
  7. V. X. D. Yang, M. L. Gordon, S. J. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11, 2416-2424 (2003).
    [CrossRef] [PubMed]
  8. D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5487-5501 (2004).
    [CrossRef] [PubMed]
  9. C. Y. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
    [CrossRef] [PubMed]
  10. S. D. Dyer, T. Dennis, L. K. Street, S. M. Etzel, T. A. Germer, and A. Dienstfrey, "Spectroscopic phase-dispersion optical coherence tomography measurements of scattering phantoms," Opt. Express 14, 8138-8153 (2006).
    [CrossRef] [PubMed]
  11. D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003).
    [CrossRef] [PubMed]
  12. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015-1017 (2005).
    [CrossRef] [PubMed]
  13. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  14. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  15. C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079-1081 (2006).
    [CrossRef] [PubMed]
  16. C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, "Nonlinear optical contrast enhancement for optical coherence tomography," Opt. Express 12, 331-341 (2004).
    [CrossRef] [PubMed]
  17. Y. Jiang, I. Tomov, Y. M. Wang, and Z. P. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004).
    [CrossRef] [PubMed]
  18. B. E. Applegate, C. Yang, A. M. Rollins, and J. A. Izatt, "Polarization-resolved second-harmonic-generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004).
    [CrossRef] [PubMed]
  19. S. Yazdanfar, L. H. Laiho, and P. T. C. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739-2745 (2004).
    [CrossRef] [PubMed]
  20. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391-2393 (2005).
    [CrossRef] [PubMed]
  21. J. P. Su, I. V. Tomov, Y. Jiang, and Z. P. Chen, "High-resolution frequency-domain second-harmonic optical coherence tomography," Appl. Opt. 46, 1770-1775 (2007).
    [CrossRef] [PubMed]
  22. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
    [CrossRef] [PubMed]
  23. B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006).
    [CrossRef] [PubMed]
  24. Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
    [CrossRef] [PubMed]
  25. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. J. Toublan, K. S. Suslick, and S. A. Boppart, "Engineered microsphere contrast agents for optical coherence tomography," Opt. Lett. 28, 1546-1548 (2003).
    [CrossRef] [PubMed]
  26. C. Y. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
    [CrossRef] [PubMed]
  27. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005).
    [CrossRef] [PubMed]
  28. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).
  29. H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005).
    [CrossRef] [PubMed]
  30. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
    [CrossRef] [PubMed]
  31. A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
    [CrossRef] [PubMed]
  32. A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
    [CrossRef] [PubMed]
  33. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
    [CrossRef] [PubMed]
  34. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
    [CrossRef] [PubMed]
  35. J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
    [CrossRef]
  36. T. S. Troutman, J. K. Barton, and M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
    [CrossRef] [PubMed]
  37. C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
    [CrossRef] [PubMed]
  38. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
    [PubMed]
  39. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
    [CrossRef] [PubMed]
  40. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
    [CrossRef] [PubMed]
  41. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. E. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
    [CrossRef] [PubMed]
  42. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    [CrossRef] [PubMed]
  43. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
    [CrossRef] [PubMed]
  44. V. P. Zharov and D. O. Lapotko, "Photothermal imaging of nanoparticles and cells," IEEE J. Sel. Top. Quantum 11, 733-751 (2005).
    [CrossRef]
  45. A. V. Brusnichkin, D. A. Nedosekin, M. A. Proskurnin, and V. P. Zharov, "Photothermal lens detection of gold nanoparticles: Theory and experiments," Appl. Spectrosc. 61, 1191-1201 (2007).
    [CrossRef] [PubMed]
  46. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  47. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  48. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  49. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nature Photon. 1, 709-716 (2007).
    [CrossRef]
  50. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
    [CrossRef] [PubMed]
  51. M. J. C. van Gemert, G. W. Lucassen, and A. J. Welch, "Time constants in thermal laser medicine.2. Distributions of time constants and thermal relaxation of tissue," Phys. Med. Biol. 41, 1381-1399 (1996).
    [CrossRef] [PubMed]
  52. T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
    [CrossRef] [PubMed]
  53. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
    [CrossRef] [PubMed]
  54. A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, "Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy," Opt. Express 15, 8115-8124 (2007).
    [CrossRef] [PubMed]
  55. E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells," J. Biomed. Opt. 12, 044008 (2007).
    [CrossRef] [PubMed]
  56. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12, 020501 (2007).
    [CrossRef] [PubMed]
  57. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
    [CrossRef] [PubMed]

2007 (11)

J. P. Su, I. V. Tomov, Y. Jiang, and Z. P. Chen, "High-resolution frequency-domain second-harmonic optical coherence tomography," Appl. Opt. 46, 1770-1775 (2007).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

T. S. Troutman, J. K. Barton, and M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

A. V. Brusnichkin, D. A. Nedosekin, M. A. Proskurnin, and V. P. Zharov, "Photothermal lens detection of gold nanoparticles: Theory and experiments," Appl. Spectrosc. 61, 1191-1201 (2007).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nature Photon. 1, 709-716 (2007).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
[CrossRef] [PubMed]

A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, "Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy," Opt. Express 15, 8115-8124 (2007).
[CrossRef] [PubMed]

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells," J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12, 020501 (2007).
[CrossRef] [PubMed]

2006 (10)

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006).
[CrossRef] [PubMed]

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

S. D. Dyer, T. Dennis, L. K. Street, S. M. Etzel, T. A. Germer, and A. Dienstfrey, "Spectroscopic phase-dispersion optical coherence tomography measurements of scattering phantoms," Opt. Express 14, 8138-8153 (2006).
[CrossRef] [PubMed]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079-1081 (2006).
[CrossRef] [PubMed]

2005 (13)

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015-1017 (2005).
[CrossRef] [PubMed]

C. Y. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391-2393 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

V. P. Zharov and D. O. Lapotko, "Photothermal imaging of nanoparticles and cells," IEEE J. Sel. Top. Quantum 11, 733-751 (2005).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. E. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

2004 (7)

2003 (8)

D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, S. J. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11, 2416-2424 (2003).
[CrossRef] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. J. Toublan, K. S. Suslick, and S. A. Boppart, "Engineered microsphere contrast agents for optical coherence tomography," Opt. Lett. 28, 1546-1548 (2003).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

2002 (1)

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
[PubMed]

2001 (1)

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

2000 (2)

1997 (2)

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1 (1997).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

1996 (1)

M. J. C. van Gemert, G. W. Lucassen, and A. J. Welch, "Time constants in thermal laser medicine.2. Distributions of time constants and thermal relaxation of tissue," Phys. Med. Biol. 41, 1381-1399 (1996).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Aalders, M. C.

Aalders, M. C. G.

Aaron, J.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Adler, D. C.

Agrawal, A.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Akkin, T.

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

Applegate, B. E.

Au, L.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Barton, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Barton, J. K.

T. S. Troutman, J. K. Barton, and M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Bisland, S.

Boppart, S. A.

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079-1081 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005).
[CrossRef] [PubMed]

C. Y. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
[CrossRef] [PubMed]

C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, "Nonlinear optical contrast enhancement for optical coherence tomography," Opt. Express 12, 331-341 (2004).
[CrossRef] [PubMed]

C. Y. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
[CrossRef] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. J. Toublan, K. S. Suslick, and S. A. Boppart, "Engineered microsphere contrast agents for optical coherence tomography," Opt. Lett. 28, 1546-1548 (2003).
[CrossRef] [PubMed]

Bouma, B. E.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12, 020501 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

Bredfeldt, J. S.

Brusnichkin, A. V.

Cang, H.

H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Carney, P. S.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Chen, J. Y.

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nature Photon. 1, 709-716 (2007).
[CrossRef]

Chen, Z.

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
[PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

Chen, Z. P.

Choma, M. A.

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells," J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

Cobb, M. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nature Photon. 1, 709-716 (2007).
[CrossRef]

Creazzo, T. L.

Dave, D.

de Boer, J. E.

de Boer, J. F.

Dennis, T.

Dienstfrey, A.

Ding, Z.

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
[PubMed]

Drexler, W.

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Dyer, S. D.

Ellerbee, A. K.

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells," J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, "Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy," Opt. Express 15, 8115-8124 (2007).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

Etzel, S. M.

Faber, D. J.

Feldman, M. D.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

Fercher, A. F.

Fingler, J.

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Follen, M.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Fujimoto, J. G.

D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nature Photon. 1, 709-716 (2007).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5487-5501 (2004).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gardiner, G.

Germer, T. A.

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Gordon, M. L.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gunther, J. R.

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Hansen, M. N.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Heng, X.

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Herz, P. R.

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Hitzenberger, C. K.

Hong, Y.

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, S.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Huber, R.

Ippen, E. P.

Izatt, J. A.

A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, "Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy," Opt. Express 15, 8115-8124 (2007).
[CrossRef] [PubMed]

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells," J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391-2393 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

B. E. Applegate, C. Yang, A. M. Rollins, and J. A. Izatt, "Polarization-resolved second-harmonic-generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1 (1997).
[CrossRef] [PubMed]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Jiang, Y.

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

Joo, C.

Kang, H. W.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

Kartner, F. X.

Kim, J.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

Kimmey, M. B.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Ko, T. H.

Kowalczyk, A.

Kulkarni, M. D.

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1 (1997).
[CrossRef] [PubMed]

Laiho, L. H.

Lapotko, D. O.

V. P. Zharov and D. O. Lapotko, "Photothermal imaging of nanoparticles and cells," IEEE J. Sel. Top. Quantum 11, 733-751 (2005).
[CrossRef]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Lee, T. M.

Leitgeb, R.

Li, X.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Li, X. D.

Li, Z. Y.

Li, Z.-Y.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Lin, A. W. H.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lo, S.

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

Lucassen, G. W.

M. J. C. van Gemert, G. W. Lucassen, and A. J. Welch, "Time constants in thermal laser medicine.2. Distributions of time constants and thermal relaxation of tissue," Phys. Med. Biol. 41, 1381-1399 (1996).
[CrossRef] [PubMed]

Luo, W.

Makita, S.

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Marcon, N. E.

Marks, D. L.

McDowell, E.

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

McDowell, E. J.

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells," J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

Mik, E. G.

Milner, T. E.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

Mok, A.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11 (2003).
[CrossRef] [PubMed]

Morgner, U.

Nedosekin, D. A.

Nelson, J. S.

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
[PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

Oh, J.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

Oldenburg, A. L.

Park, B. H.

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Pekar, J.

Pfefer, T. J.

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Pitris, C.

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

Proskurnin, M. A.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Qi, B.

Ralston, T. S.

Rao, K. D.

Ren, H.

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
[PubMed]

Richards-Kortum, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Rollins, A. M.

Romanowski, M.

Saeki, F.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Sanghi, P.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

Sarunic, M. V.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nature Photon. 1, 709-716 (2007).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Seng-Yue, E.

Sitafalwalla, S.

So, P. T. C.

Sokolov, K.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

Srinivasan, V. J.

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Street, L. K.

Su, J. P.

Sun, T.

Suslick, K. S.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Taira, K.

Tan, W.

Tang, S. J.

Tearney, G. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12, 020501 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

Tomov, I.

Tomov, I. V.

Toublan, F. J. J.

Troutman, T. S.

Troy, T. L.

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12, 020501 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

van Gemert, M. J. C.

M. J. C. van Gemert, G. W. Lucassen, and A. J. Welch, "Time constants in thermal laser medicine.2. Distributions of time constants and thermal relaxation of tissue," Phys. Med. Biol. 41, 1381-1399 (1996).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Vinegoni, C.

Vitkin, I. A.

Wang, Y. M.

Wei, A.

Wei, X. B.

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

Welch, A. J.

M. J. C. van Gemert, G. W. Lucassen, and A. J. Welch, "Time constants in thermal laser medicine.2. Distributions of time constants and thermal relaxation of tissue," Phys. Med. Biol. 41, 1381-1399 (1996).
[CrossRef] [PubMed]

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Wiley, B. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005).
[CrossRef] [PubMed]

Wilson, B. C.

Wojtkowski, M.

Wu, J. G.

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Xia, Y.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Xia, Y. N.

Xu, C. Y.

Yamanari, M.

Yang, C.

Yang, C. H.

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

Yang, V. X. D.

Yaqoob, Z.

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

S. Yazdanfar, L. H. Laiho, and P. T. C. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739-2745 (2004).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1 (1997).
[CrossRef] [PubMed]

Ye, J.

Yun, S. H.

Zhang, H.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Zhao, Y.

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
[PubMed]

Zharov, V. P.

Zweifel, D. A.

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biophys. J. (1)

C. M. Pitsillides, E. K. Joe, X. B. Wei, R. R. Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003).
[CrossRef] [PubMed]

Cancer Res. (1)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
[PubMed]

IEEE J. Sel. Top. Quantum (1)

V. P. Zharov and D. O. Lapotko, "Photothermal imaging of nanoparticles and cells," IEEE J. Sel. Top. Quantum 11, 733-751 (2005).
[CrossRef]

J. Biomed. Opt. (6)

E. J. McDowell, A. K. Ellerbee, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells," J. Biomed. Opt. 12, 044008 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12, 020501 (2007).
[CrossRef] [PubMed]

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, "Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy," J. Biomed. Opt. 11, 024014 (2006).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Z. Yaqoob, E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Laser. Surg. Med. (1)

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Laser. Surg. Med. 39, 266-272 (2007).
[CrossRef]

Nano Lett. (3)

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

Nature Photon. (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nature Photon. 1, 709-716 (2007).
[CrossRef]

Opt. Express (18)

A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, "Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy," Opt. Express 15, 8115-8124 (2007).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
[CrossRef] [PubMed]

B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006).
[CrossRef] [PubMed]

S. Yazdanfar, L. H. Laiho, and P. T. C. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739-2745 (2004).
[CrossRef] [PubMed]

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1 (1997).
[CrossRef] [PubMed]

C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, "Nonlinear optical contrast enhancement for optical coherence tomography," Opt. Express 12, 331-341 (2004).
[CrossRef] [PubMed]

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10 (2002).
[PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, S. J. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11, 2416-2424 (2003).
[CrossRef] [PubMed]

D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5487-5501 (2004).
[CrossRef] [PubMed]

C. Y. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
[CrossRef] [PubMed]

S. D. Dyer, T. Dennis, L. K. Street, S. M. Etzel, T. A. Germer, and A. Dienstfrey, "Spectroscopic phase-dispersion optical coherence tomography measurements of scattering phantoms," Opt. Express 14, 8138-8153 (2006).
[CrossRef] [PubMed]

Opt. Lett. (20)

D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003).
[CrossRef] [PubMed]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015-1017 (2005).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079-1081 (2006).
[CrossRef] [PubMed]

Y. Jiang, I. Tomov, Y. M. Wang, and Z. P. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004).
[CrossRef] [PubMed]

B. E. Applegate, C. Yang, A. M. Rollins, and J. A. Izatt, "Polarization-resolved second-harmonic-generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391-2393 (2005).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. J. Toublan, K. S. Suslick, and S. A. Boppart, "Engineered microsphere contrast agents for optical coherence tomography," Opt. Lett. 28, 1546-1548 (2003).
[CrossRef] [PubMed]

C. Y. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
[CrossRef] [PubMed]

A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. E. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

T. S. Troutman, J. K. Barton, and M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. J. C. van Gemert, G. W. Lucassen, and A. J. Welch, "Time constants in thermal laser medicine.2. Distributions of time constants and thermal relaxation of tissue," Phys. Med. Biol. 41, 1381-1399 (1996).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Technol. Cancer Res. T. (1)

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer," Technol. Cancer Res. T. 3, 33-40 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Double-buffered Fourier domain mode locked (FDML) laser, operating at a sweep rate of 240 kHz with a tuning range of 158 nm at a center wavelength of 1315 nm. Sweep rate is quadrupled by internal and external buffering stages. ISO, optical isolator. SOA, semiconductor optical amplifier. FFP-TF, fiber Fabry-Perot tunable filter.

Fig. 2.
Fig. 2.

(a). Integrated FDML output spectrum, with a tuning range of 158 nm and a full-width-half-maximum bandwidth of 117 nm. (b). OCT point spread functions measured at increasing ranging depths.

Fig. 3.
Fig. 3.

Swept-source OCT phase microscope with photothermal modulation system. C1, C2, C3, collimating lenses. OBJ, objective lens. DCM, dichroic mirror. X,Y, galvanometer mirrors. PD, photodiode. A, amplifier. TRG, sweep trigger. CH 1, OCT signal input. CH 2, calibration signal input. DAQ, data acquisition. Inset shows measured phase noise of 2.2 mrad.

Fig. 4.
Fig. 4.

Sample holder and beam geometries for photothermal detection of gold nanoparticles. Beam widths are approximate 1/e2 points of optical intensity.

Fig. 5.
Fig. 5.

Measured phase from back surface of cuvette vs. time. a, Deionized water with 808 nm laser deactivated. b, 1×1010 mL-1 nanoshell solution with 808 nm laser deactivated. c, Deionized water with 808 nm laser modulated at 500 Hz. Red pulse train shows laser modulation signal. d, 1×1010 mL-1 nanoshell solution with 808 nm laser modulated at 500 Hz. Red pulse train shows laser modulation signal. Phase modulations are visible only when sample contains nanoshells and when 808 nm laser is activated.

Fig. 6.
Fig. 6.

Fourier transform of phase vs. time curves, measured at back surface of cuvette. (a). Deionized water with 808 nm laser deactivated. (b). 1×1010 mL-1 nanoshell solution with 808 nm laser deactivated. (c). Deionized water with 808 nm laser modulated at 500 Hz. d, 1×1010 mL-1 nanoshell solution with 808 nm laser modulated at 500 Hz. Strong peak is observed at 500 Hz when nanoshells are present and the 808 nm laser is activated. SNR, signal-to-noise ratio.

Fig. 7.
Fig. 7.

Measured phase (a–c) and Fourier transforms (d–f) of measured phase at various 808 nm laser modulation frequencies. Red lines in (a–c) show time when 808 nm laser was activated. Insets in (b,c) show enlarged views of measured phase. 808 nm laser modulation frequencies were 1 kHz (a,d), 15 kHz (b,e), and 60 kHz (c,f). SNR, signal-to-noise ratio.

Fig. 8.
Fig. 8.

Measured gold nanoshell signal-to-noise ratio (SNR) as the sample observation time is decreased for an 808 nm laser modulation frequency of 15 kHz.

Fig. 9.
Fig. 9.

Thermal modeling results showing estimated sample temperature calculated from observed phase changes. a, Phase changes of 0–10 rad. b, Phase changes of 0–2 rad.

Fig. 10.
Fig. 10.

(a). Thermal modeling results showing expected temperature increases for 808 nm beam radii of 4–40 µm. b, Comparison of thermal model (red curve) and thermal response estimated from phase measurement (blue curve) for a modulation frequency of 500 Hz, beam radius of 70 µm, and average power of 138 mW.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

z ( T ) = L ( T ) n ( T )
Δ z = z ( T 0 + Δ T ) z ( T 0 ) = z ( T 0 + Δ T ) z 0
Δ z = L ( T 0 + Δ T ) n ( T 0 + Δ T ) z 0
L ( T 0 + Δ T ) = L 0 × ( 1 + β Δ T )
n ( T 0 + Δ T ) = n 0 + dn dT Δ T
Δ z = L 0 ( 1 + β Δ T ) ( n 0 + dn dT Δ T ) z 0
Δ z = L 0 n 0 + L 0 dn dT Δ T + L 0 β Δ Tn 0 + L 0 β Δ T 2 dn dT z 0
Δ z = L 0 dn dT Δ T + L 0 β n 0 Δ T + L 0 β dn dT Δ T 2
Δ z = λ 0 4 π Δ ϕ
L 0 β dn dT Δ T 2 + ( L 0 dn dT + L 0 β n 0 ) Δ T λ 0 Δ ϕ 4 π = 0
Δ T ( t , z , r ) t = μ a φ ( z , r ) ρ c + α ( 2 Δ T ( t , z , r ) z 2 + 2 Δ T ( t , z , r ) r 2 + 2 Δ T ( t , z , r ) r r )
Δ T ( t , r = 0 ) = E μ a ρ c ( W 2 8 α ) In ( 1 + 8 t α W 2 ) , W 1 μ a , t t p
Δ T ( t t p , r = 0 ) = E μ a ρ c ( W 2 8 α ) In ( 1 + t p α W 2 8 + α ( t t p ) ) , W 1 μ a , t t p
E = 2 P PLS π W 2
α = k ρ c

Metrics