Abstract

We report the fabrication of a novel type of hollow core photonic bandgap fiber (PBGF) with a small core formed by 3 omitted unit cells in a triangular array of holes. The transmission properties of fibers designed for operation at 1500nm wavelength are investigated both experimentally and through extensive modeling. The novel PBGF structure provides robust single mode guidance and is of particular interest for device applications which require low index bandgap guidance and short device lengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-236.
    [CrossRef] [PubMed]
  2. L. F. Michaille, D. M. Taylor, C. R. H. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers," Proc. SPIE 5618, 30-38 (2004).
    [CrossRef]
  3. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080.
    [CrossRef] [PubMed]
  5. F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
  6. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  7. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
    [CrossRef] [PubMed]
  8. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
    [CrossRef]
  9. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1485.
    [CrossRef] [PubMed]
  10. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-17-7974.
    [CrossRef] [PubMed]
  11. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, "Control of surface modes in low loss hollow-core photonic bandgap fibers," Opt. Express 16, 1142-1149 (2008) http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1142.
    [CrossRef] [PubMed]
  12. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Design of 7 and 19 cell core air-guiding photonic crystal fibers for low-loss wide bandwidth and dispersion controlled operation," Opt. Express 15, 17577-17586 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17577.
    [CrossRef] [PubMed]
  13. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, "Understanding air-core photonic-bandgap fibers: analogy to conventional fibers," J. Lightwave Technol. 23, 4169-4177 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-12-4169.
    [CrossRef]
  14. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004).
    [CrossRef]
  15. T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
    [CrossRef]
  16. M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, and J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Express 13, 1457-1467 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1457.
    [CrossRef] [PubMed]
  17. J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, "Measuring beam quality of hollow core photonic crystal fibers," J. Lightwave Technol. 24, 3761-3769 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-10-3761.
    [CrossRef]
  18. S. Lebrun, P. Delaye, R. Frey, and G. Roosen, "High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber," Opt. Lett. 32, 337-339 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-4-337.
    [CrossRef] [PubMed]
  19. S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightwave Technol. 25, 861-865 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-3-861.
    [CrossRef]
  20. N. A. Mortensen and M. D. Nielsen, "Modeling of realistic cladding structures for air-core photonic bandgap fibers," Opt. Lett. 29, 349-351 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-4-349.
    [CrossRef] [PubMed]
  21. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-10-3728.
    [CrossRef] [PubMed]
  22. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100.
    [CrossRef] [PubMed]
  23. F. Poletti, N. G. Broderick, D. Richardson, and T. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9115.
    [CrossRef] [PubMed]
  24. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, "Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling," J. Lightwave Technol. 22, 11-15 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-22-1-11.
    [CrossRef]
  25. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, "Measuring beam quality of hollow core photonic crystal fibers," J. Lightwave Technol. 24, 3761-3769 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-10-3761.
[CrossRef]

F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).

T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
[CrossRef]

2005 (4)

2004 (5)

2003 (4)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100.
[CrossRef] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Allan, D.

Allan, D. C.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Benabid, F.

F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Bennett, C. R. H.

L. F. Michaille, D. M. Taylor, C. R. H. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers," Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Bjarklev, A.

Blin, S.

Borrelli, N.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

Broderick, N. G.

Broderick, N. G. R.

Broeng, J.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Digonnet, M. J. F.

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightwave Technol. 25, 861-865 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-3-861.
[CrossRef]

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004).
[CrossRef]

Fan, S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004).
[CrossRef]

Finazzi, V.

Folkenberg, J. R.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Gisin, N.

Hand, D. P.

Hansen, T.

Hansen, T. P.

Jacobsen, C.

L. F. Michaille, D. M. Taylor, C. R. H. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers," Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Jakobsen, C.

Jones, J. D. C.

Kim, H. K.

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightwave Technol. 25, 861-865 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-3-861.
[CrossRef]

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004).
[CrossRef]

Kino, G. S.

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightwave Technol. 25, 861-865 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-3-861.
[CrossRef]

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004).
[CrossRef]

Knight, J. C.

J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, "Measuring beam quality of hollow core photonic crystal fibers," J. Lightwave Technol. 24, 3761-3769 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-10-3761.
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Koch, K.

Koch, K. W.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Koshiba, M.

T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
[CrossRef]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100.
[CrossRef] [PubMed]

Legré, M.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Michaille, L. F.

L. F. Michaille, D. M. Taylor, C. R. H. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers," Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Monro, T.

Monro, T. M.

Mortensen, N. A.

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

Murao, T.

T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
[CrossRef]

Nielsen, M. D.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Poletti, F.

Richardson, D.

Richardson, D. J.

Roberts, P. J.

J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, "Measuring beam quality of hollow core photonic crystal fibers," J. Lightwave Technol. 24, 3761-3769 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-10-3761.
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Russell, J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Saitoh, K.

T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
[CrossRef]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100.
[CrossRef] [PubMed]

Shephard, J. D.

Shepherd, T. J.

L. F. Michaille, D. M. Taylor, C. R. H. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers," Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Shin, J.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004).
[CrossRef]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Simonsen, H. R.

Skovgaard, P. M. W.

Smith, C.

Smith, C. M.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

St., P.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Taylor, D. M.

L. F. Michaille, D. M. Taylor, C. R. H. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers," Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Tse, V.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

Vienne, G.

Wegmuller, M.

West, J.

West, J. A.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Zhang, P.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

IEEE J. of Quant. Electron. (1)

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. of Quant. Electron. 40, 551-556 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Murao, K. Saitoh, and M. Koshiba, "Realization of single-moded broadband air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 1666-1668 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Nature (2)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica-air photonic bandgap fiber," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phil. Trans. R. Soc. (1)

F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).

Proc. SPIE (2)

L. F. Michaille, D. M. Taylor, C. R. H. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers," Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic bandgap fibers," Proc. SPIE 5000, 161-174 (2003).
[CrossRef]

Science (2)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-39 (1999).
[CrossRef] [PubMed]

Other (7)

S. Lebrun, P. Delaye, R. Frey, and G. Roosen, "High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber," Opt. Lett. 32, 337-339 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-4-337.
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080.
[CrossRef] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-236.
[CrossRef] [PubMed]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-17-7974.
[CrossRef] [PubMed]

R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, "Control of surface modes in low loss hollow-core photonic bandgap fibers," Opt. Express 16, 1142-1149 (2008) http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1142.
[CrossRef] [PubMed]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Design of 7 and 19 cell core air-guiding photonic crystal fibers for low-loss wide bandwidth and dispersion controlled operation," Opt. Express 15, 17577-17586 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17577.
[CrossRef] [PubMed]

M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, "Understanding air-core photonic-bandgap fibers: analogy to conventional fibers," J. Lightwave Technol. 23, 4169-4177 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-12-4169.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the fabricated 3c PBGF.

Fig. 2.
Fig. 2.

(Top row) Scanning electron micrographs of fabricated PBGFs for transmission at 1500 nm: 3c (left), 7c (center) and 19c (right). (Bottom row) Calculated fundamental air guided mode of the corresponding idealized structures.

Fig. 3.
Fig. 3.

Calculated optical properties of all air-guided modes supported in the 3c, (b) 7c and (c) 19c PBG fibers: (top row) effective index; (middle row) confinement loss; (bottom row) surface scattering coefficient (F-factor).

Fig. 4.
Fig. 4.

Transmission (normalized against the source intensity) of the fabricated 3c PBGF (2m length). The insert shows the fibre loss measured over a 40m cutback.

Fig. 5.
Fig. 5.

Mode profiles (linear intensity distributions) at the output of the 3c PBGF (top row), 7c PBGFs (middle) and 19c PBGF (bottom) for different fiber lengths L and offsets of the input launch conditions (Δξ is the relative spatial offset of launch, Δx/RC, with RC the core radius).

Tables (1)

Tables Icon

Table 1. Comparison between the calculated optical properties of the fundamental air guided modes for the three PBGF structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N MAX 1 2 ( ω 0 Λ c ) 2 ( 1 k L 2 ( ω 0 ) ω 0 2 c 2 ) · ( R C Λ ) 2

Metrics