Abstract

A system to measure light scattering from individual cells excited by an acoustic wave was designed, and tests were performed on live Jurkat cells. Cells passing in a laminar stream within a water bath were excited by a focused ultrasound pulse, while the scattered light from a laser beam was monitored at various scattering angles. The cells were modeled as viscoelastic liquid drops, which return to equilibrium via shape oscillations after an acoustically-induced deformation. The Fast Fourier Transform of the scattered light signal was used to extract information about the highly-damped resonant frequencies of the cells, and the detected frequencies are consistent with theoretical predictions.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Differential light scattering photometer for rapid analysis of single particles in flow

M. Bartholdi, G. C. Salzman, R. D. Hiebert, and M. Kerker
Appl. Opt. 19(10) 1573-1581 (1980)

Elastic light scattering from nucleated blood cells: rapid numerical analysis

P. M. A. Sloot and C. G. Figdor
Appl. Opt. 25(19) 3559-3565 (1986)

Size and refractive index of individual marine particulates: a flow cytometric approach

Steven G. Ackleson and Richard W. Spinrad
Appl. Opt. 27(7) 1270-1277 (1988)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326–1328 (2007).
    [Crossref] [PubMed]
  2. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).
    [Crossref]
  3. G. M. Cooper and R. E. Hausman, The Cell: A Molecular Approach, (ASM Press, 2003).
  4. R. Piga, R. Micheletto, and Y. Kawakami, “Acoustical nanometre-scale vibrations of live cells detected by a near-field optical setup,” Opt. Express 15, 5589–5594 (2007).
    [Crossref] [PubMed]
  5. J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
    [Crossref] [PubMed]
  6. S. H. Bloch, R. E. Short, K. W. Ferrara, and E. R. Wisner, “The effect of size on the acoustic response of polymer-shelled contrast agents,” Ultrasound Med. Biol. 31, 439–444 (2005).
    [Crossref] [PubMed]
  7. M. S. Roos and R. E. Apfel, “Application of 30-MHz acoustic scattering to the study of human red blood cells,” J. Acoust. Soc. Am. 83, 1639–1644 (1988).
    [Crossref] [PubMed]
  8. L. Haider, P. Snabre, and M. Boynard, “Rheology and Ultrasound Scattering from Aggregated Red Cell Suspensions in Shear Flow,” Biophysics J. 87, 2322–2334, 2004.
    [Crossref]
  9. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wylie, 1998).
    [Crossref]
  10. C.S. Mulvey, A.L. Curtis, S.K. Singh, and I.J. Bigio, “Elastic scattering spectroscopy as a diagnostic tool for apoptosis in cell cultures,” IEEE J. Sel. Topics in Quantum Electron. 13, 1663–1670 (2007).
    [Crossref]
  11. H. C. Van de Hulst, Light Scattering by Small Particles, (Wylie, 1957).
  12. R. A. Roy and R. E. Apfel, “Mechanical characterization of microparticles by scattered ultrasound,” J. Acoust. Soc. Am. 87, 2332–2341 (1990).
    [Crossref] [PubMed]
  13. G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).
  14. D. B. Khismatullin and A. Nadim, “Shape oscillations of a viscoelastic drop,” Phys. Rev. E 63, 061508 (2001).
    [Crossref]
  15. C. Dong and X. Lei, “Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability,” J. Biomech.,  33, 35–43 (2000).
    [Crossref]
  16. D. B. Khismatullin and G. A. Truskey, “Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity,” Phys. Fluids 17, 031505 (2005).
    [Crossref]
  17. C. A. Miller and L. E. Scriven, “The oscillations of a fluid droplet immersed in another fluid,” J. Fluid Mech. 32, 417–435 (1968).
    [Crossref]
  18. E. D. Hirleman, “Laser-based single particle counters for in situ particulate diagnostics,” Opt. Eng. 19, 854–860 (1980).
  19. D. Holve and S. A. Self, “Optical particle sizing for in situ measurements-Part 1,” Appl. Opt. 18, 1632–1645 (1979).
    [Crossref] [PubMed]

2007 (4)

2005 (3)

J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
[Crossref] [PubMed]

S. H. Bloch, R. E. Short, K. W. Ferrara, and E. R. Wisner, “The effect of size on the acoustic response of polymer-shelled contrast agents,” Ultrasound Med. Biol. 31, 439–444 (2005).
[Crossref] [PubMed]

D. B. Khismatullin and G. A. Truskey, “Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity,” Phys. Fluids 17, 031505 (2005).
[Crossref]

2004 (1)

L. Haider, P. Snabre, and M. Boynard, “Rheology and Ultrasound Scattering from Aggregated Red Cell Suspensions in Shear Flow,” Biophysics J. 87, 2322–2334, 2004.
[Crossref]

2001 (1)

D. B. Khismatullin and A. Nadim, “Shape oscillations of a viscoelastic drop,” Phys. Rev. E 63, 061508 (2001).
[Crossref]

2000 (1)

C. Dong and X. Lei, “Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability,” J. Biomech.,  33, 35–43 (2000).
[Crossref]

1990 (1)

R. A. Roy and R. E. Apfel, “Mechanical characterization of microparticles by scattered ultrasound,” J. Acoust. Soc. Am. 87, 2332–2341 (1990).
[Crossref] [PubMed]

1988 (1)

M. S. Roos and R. E. Apfel, “Application of 30-MHz acoustic scattering to the study of human red blood cells,” J. Acoust. Soc. Am. 83, 1639–1644 (1988).
[Crossref] [PubMed]

1980 (1)

E. D. Hirleman, “Laser-based single particle counters for in situ particulate diagnostics,” Opt. Eng. 19, 854–860 (1980).

1979 (1)

1968 (1)

C. A. Miller and L. E. Scriven, “The oscillations of a fluid droplet immersed in another fluid,” J. Fluid Mech. 32, 417–435 (1968).
[Crossref]

Apfel, R. E.

R. A. Roy and R. E. Apfel, “Mechanical characterization of microparticles by scattered ultrasound,” J. Acoust. Soc. Am. 87, 2332–2341 (1990).
[Crossref] [PubMed]

M. S. Roos and R. E. Apfel, “Application of 30-MHz acoustic scattering to the study of human red blood cells,” J. Acoust. Soc. Am. 83, 1639–1644 (1988).
[Crossref] [PubMed]

Becvarova, P.

J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
[Crossref] [PubMed]

Beebe, S.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Bigio, I.J.

C.S. Mulvey, A.L. Curtis, S.K. Singh, and I.J. Bigio, “Elastic scattering spectroscopy as a diagnostic tool for apoptosis in cell cultures,” IEEE J. Sel. Topics in Quantum Electron. 13, 1663–1670 (2007).
[Crossref]

Bloch, S. H.

S. H. Bloch, R. E. Short, K. W. Ferrara, and E. R. Wisner, “The effect of size on the acoustic response of polymer-shelled contrast agents,” Ultrasound Med. Biol. 31, 439–444 (2005).
[Crossref] [PubMed]

Bohren, C.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wylie, 1998).
[Crossref]

Boynard, M.

L. Haider, P. Snabre, and M. Boynard, “Rheology and Ultrasound Scattering from Aggregated Red Cell Suspensions in Shear Flow,” Biophysics J. 87, 2322–2334, 2004.
[Crossref]

Cai, X.

Chalut, K. J.

Chen, G.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Chen, N.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Cooper, G. M.

G. M. Cooper and R. E. Hausman, The Cell: A Molecular Approach, (ASM Press, 2003).

Curtis, A.L.

C.S. Mulvey, A.L. Curtis, S.K. Singh, and I.J. Bigio, “Elastic scattering spectroscopy as a diagnostic tool for apoptosis in cell cultures,” IEEE J. Sel. Topics in Quantum Electron. 13, 1663–1670 (2007).
[Crossref]

Dong, C.

C. Dong and X. Lei, “Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability,” J. Biomech.,  33, 35–43 (2000).
[Crossref]

Ferrara, K. W.

S. H. Bloch, R. E. Short, K. W. Ferrara, and E. R. Wisner, “The effect of size on the acoustic response of polymer-shelled contrast agents,” Ultrasound Med. Biol. 31, 439–444 (2005).
[Crossref] [PubMed]

Garner, A. L.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Gouesbet, G.

Gréhan, G.

Haider, L.

L. Haider, P. Snabre, and M. Boynard, “Rheology and Ultrasound Scattering from Aggregated Red Cell Suspensions in Shear Flow,” Biophysics J. 87, 2322–2334, 2004.
[Crossref]

Hausman, R. E.

G. M. Cooper and R. E. Hausman, The Cell: A Molecular Approach, (ASM Press, 2003).

Hirleman, E. D.

E. D. Hirleman, “Laser-based single particle counters for in situ particulate diagnostics,” Opt. Eng. 19, 854–860 (1980).

Holve, D.

Huffman, D. R.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wylie, 1998).
[Crossref]

Janisch, R.

J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
[Crossref] [PubMed]

Joshi, R. P.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Kawakami, Y.

Keener, J. D.

Khismatullin, D. B.

D. B. Khismatullin and G. A. Truskey, “Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity,” Phys. Fluids 17, 031505 (2005).
[Crossref]

D. B. Khismatullin and A. Nadim, “Shape oscillations of a viscoelastic drop,” Phys. Rev. E 63, 061508 (2001).
[Crossref]

Kolb, J.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Lei, X.

C. Dong and X. Lei, “Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability,” J. Biomech.,  33, 35–43 (2000).
[Crossref]

Micheletto, R.

Miller, C. A.

C. A. Miller and L. E. Scriven, “The oscillations of a fluid droplet immersed in another fluid,” J. Fluid Mech. 32, 417–435 (1968).
[Crossref]

Mornstein, V.

J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
[Crossref] [PubMed]

Mulvey, C.S.

C.S. Mulvey, A.L. Curtis, S.K. Singh, and I.J. Bigio, “Elastic scattering spectroscopy as a diagnostic tool for apoptosis in cell cultures,” IEEE J. Sel. Topics in Quantum Electron. 13, 1663–1670 (2007).
[Crossref]

Nadim, A.

D. B. Khismatullin and A. Nadim, “Shape oscillations of a viscoelastic drop,” Phys. Rev. E 63, 061508 (2001).
[Crossref]

Novy, J.

J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
[Crossref] [PubMed]

Piga, R.

Pyhtila, J. W.

Ren, K.

Roos, M. S.

M. S. Roos and R. E. Apfel, “Application of 30-MHz acoustic scattering to the study of human red blood cells,” J. Acoust. Soc. Am. 83, 1639–1644 (1988).
[Crossref] [PubMed]

Roy, R. A.

R. A. Roy and R. E. Apfel, “Mechanical characterization of microparticles by scattered ultrasound,” J. Acoust. Soc. Am. 87, 2332–2341 (1990).
[Crossref] [PubMed]

Schoenbach, K. H.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Scriven, L. E.

C. A. Miller and L. E. Scriven, “The oscillations of a fluid droplet immersed in another fluid,” J. Fluid Mech. 32, 417–435 (1968).
[Crossref]

Self, S. A.

Short, R. E.

S. H. Bloch, R. E. Short, K. W. Ferrara, and E. R. Wisner, “The effect of size on the acoustic response of polymer-shelled contrast agents,” Ultrasound Med. Biol. 31, 439–444 (2005).
[Crossref] [PubMed]

Singh, S.K.

C.S. Mulvey, A.L. Curtis, S.K. Singh, and I.J. Bigio, “Elastic scattering spectroscopy as a diagnostic tool for apoptosis in cell cultures,” IEEE J. Sel. Topics in Quantum Electron. 13, 1663–1670 (2007).
[Crossref]

Skorpikova, J.

J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
[Crossref] [PubMed]

Snabre, P.

L. Haider, P. Snabre, and M. Boynard, “Rheology and Ultrasound Scattering from Aggregated Red Cell Suspensions in Shear Flow,” Biophysics J. 87, 2322–2334, 2004.
[Crossref]

Swanson, R. J.

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

Truskey, G. A.

D. B. Khismatullin and G. A. Truskey, “Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity,” Phys. Fluids 17, 031505 (2005).
[Crossref]

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles, (Wylie, 1957).

Wax, A.

Wisner, E. R.

S. H. Bloch, R. E. Short, K. W. Ferrara, and E. R. Wisner, “The effect of size on the acoustic response of polymer-shelled contrast agents,” Ultrasound Med. Biol. 31, 439–444 (2005).
[Crossref] [PubMed]

Xu, F.

Appl. Opt. (1)

Biophysics J. (1)

L. Haider, P. Snabre, and M. Boynard, “Rheology and Ultrasound Scattering from Aggregated Red Cell Suspensions in Shear Flow,” Biophysics J. 87, 2322–2334, 2004.
[Crossref]

IEEE J. Sel. Topics in Quantum Electron. (1)

C.S. Mulvey, A.L. Curtis, S.K. Singh, and I.J. Bigio, “Elastic scattering spectroscopy as a diagnostic tool for apoptosis in cell cultures,” IEEE J. Sel. Topics in Quantum Electron. 13, 1663–1670 (2007).
[Crossref]

J. Acoust. Soc. Am. (2)

R. A. Roy and R. E. Apfel, “Mechanical characterization of microparticles by scattered ultrasound,” J. Acoust. Soc. Am. 87, 2332–2341 (1990).
[Crossref] [PubMed]

M. S. Roos and R. E. Apfel, “Application of 30-MHz acoustic scattering to the study of human red blood cells,” J. Acoust. Soc. Am. 83, 1639–1644 (1988).
[Crossref] [PubMed]

J. Biomech. (1)

C. Dong and X. Lei, “Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability,” J. Biomech.,  33, 35–43 (2000).
[Crossref]

J. Fluid Mech. (1)

C. A. Miller and L. E. Scriven, “The oscillations of a fluid droplet immersed in another fluid,” J. Fluid Mech. 32, 417–435 (1968).
[Crossref]

J. Opt. Soc. Am. A (1)

Microsc. Res. Tech. (1)

J. Novy, P. Becvarova, J. Skorpikova, V. Mornstein, and R. Janisch, “Discrete Fourier Transform-based analysis of HeLa cell microtubules after ultrasonic exposure,” Microsc. Res. Tech. 68, 1–5 (2005).
[Crossref] [PubMed]

Opt. Eng. (1)

E. D. Hirleman, “Laser-based single particle counters for in situ particulate diagnostics,” Opt. Eng. 19, 854–860 (1980).

Opt. Express (1)

Opt. Lett. (1)

Phys. Fluids (1)

D. B. Khismatullin and G. A. Truskey, “Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: Effects of cell deformability and viscoelasticity,” Phys. Fluids 17, 031505 (2005).
[Crossref]

Phys. Rev. E (1)

D. B. Khismatullin and A. Nadim, “Shape oscillations of a viscoelastic drop,” Phys. Rev. E 63, 061508 (2001).
[Crossref]

Ultrasound Med. Biol. (1)

S. H. Bloch, R. E. Short, K. W. Ferrara, and E. R. Wisner, “The effect of size on the acoustic response of polymer-shelled contrast agents,” Ultrasound Med. Biol. 31, 439–444 (2005).
[Crossref] [PubMed]

Other (4)

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wylie, 1998).
[Crossref]

G. M. Cooper and R. E. Hausman, The Cell: A Molecular Approach, (ASM Press, 2003).

G. Chen, N. Chen, A. L. Garner, J. Kolb, R. J. Swanson, S. Beebe, R. P. Joshi, and K. H. Schoenbach, “Conductivity in Jurkat cell suspensions after ultrashort electric pulsing,” Proc. 3rd Int’l. Workshop on Biological Effect of EMFs, 56–65 (2004).

H. C. Van de Hulst, Light Scattering by Small Particles, (Wylie, 1957).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Laminar flow setup.

Fig. 2.
Fig. 2.

Excitation-detection system.

Fig. 3.
Fig. 3.

Individual Peak.

Fig. 4.
Fig. 4.

FFT of one peak obtained with the ultrasound off and one peak obtained with the ultrasound on.

Fig. 5.
Fig. 5.

Averaged FFTs of 75 peaks obtained with the ultrasound off and 75 peaks obtained with the ultrasound on.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω e l = 2 ( n 1 ) ( 2 n 2 + 4 n + 3 ) μ c ( 2 n + 1 ) ( 1 + E n ) ρ c R 2 λ 1 c , E n = 4 n ( n 1 ) ( n + 2 ) ( 2 n + 1 ) ( 2 n + 3 ) ( 2 n + 5 ) ,

Metrics