Abstract

Since blood flow is tightly coupled to the health status of biological tissue, several instruments have been developed to monitor blood flow and perfusion dynamics. One such instrument is laser speckle imaging. The goal of this study was to evaluate the use of two velocity distribution assumptions (Lorentzian- and Gaussian-based) to calculate speckle flow index (SFI) values. When the normalized autocorrelation function for the Lorentzian and Gaussian velocity distributions satisfy the same definition of correlation time, then the same velocity range is predicted for low speckle contrast (0<C<0.6) and predict different flow velocity range for high contrast. Our derived equations form the basis for simplified calculations of SFI values.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging

Haiying Cheng and Timothy Q. Duong
Opt. Lett. 32(15) 2188-2190 (2007)

Laser speckle imaging in the spatial frequency domain

Amaan Mazhar, David J. Cuccia, Tyler B. Rice, Stefan A. Carp, Anthony J. Durkin, David A. Boas, Bernard Choi, and Bruce J. Tromberg
Biomed. Opt. Express 2(6) 1553-1563 (2011)

Can laser speckle flowmetry be made a quantitative tool?

Donald D. Duncan and Sean J. Kirkpatrick
J. Opt. Soc. Am. A 25(8) 2088-2094 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Dunn, T. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
    [Crossref] [PubMed]
  2. S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
    [Crossref] [PubMed]
  3. H. W. Ren, Z. H. Ding, Y. H. Zhao, J. J. Miao, J. S. Nelson, and Z. P. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27, 1702–1704 (2002).
    [Crossref]
  4. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
    [Crossref] [PubMed]
  5. A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
    [Crossref]
  6. J.D. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
    [Crossref]
  7. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
    [Crossref]
  8. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
    [Crossref] [PubMed]
  9. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo, and H. Gong, “Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43, 5772–5777 (2004).
    [Crossref] [PubMed]
  10. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
    [Crossref] [PubMed]
  11. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279–290 (2005).
    [Crossref] [PubMed]
  12. H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
    [Crossref] [PubMed]
  13. M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
    [Crossref] [PubMed]
  14. K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
    [Crossref] [PubMed]
  15. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model,” Microvasc. Res. 68, 143–146 (2004).
    [Crossref] [PubMed]
  16. T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
    [Crossref] [PubMed]
  17. B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
    [Crossref] [PubMed]
  18. H. Cheng and T.Q. Duong; “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 15, 2188–2190 (2007).
    [Crossref]
  19. P Zakharov, A Völker, A Buck, B Weber, and F Scheffold ; “Quantitative modeling of Laser Speckle Imaging,” Opt. Lett. 31, 3465–3467 (2006).
    [Crossref] [PubMed]
  20. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).
  21. J.W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE,  53, 1688 (1965).
    [Crossref]
  22. J.D. Briers and A.F. Fercher “A laser speckle technique for the visualization of retinal blood flow,” Proc. SPIE 369, 22–28 (1982).
  23. R. Bracewell, The Fourier transform and its applications (Mc Graw-Hill, 1965).

2007 (1)

H. Cheng and T.Q. Duong; “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 15, 2188–2190 (2007).
[Crossref]

2006 (3)

P Zakharov, A Völker, A Buck, B Weber, and F Scheffold ; “Quantitative modeling of Laser Speckle Imaging,” Opt. Lett. 31, 3465–3467 (2006).
[Crossref] [PubMed]

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
[Crossref] [PubMed]

2005 (3)

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279–290 (2005).
[Crossref] [PubMed]

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
[Crossref] [PubMed]

2004 (4)

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
[Crossref] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model,” Microvasc. Res. 68, 143–146 (2004).
[Crossref] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo, and H. Gong, “Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43, 5772–5777 (2004).
[Crossref] [PubMed]

2003 (1)

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (1)

A. K. Dunn, T. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

1999 (1)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

1997 (1)

1995 (1)

J.D. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[Crossref]

1982 (1)

J.D. Briers and A.F. Fercher “A laser speckle technique for the visualization of retinal blood flow,” Proc. SPIE 369, 22–28 (1982).

1981 (1)

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

1965 (1)

J.W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE,  53, 1688 (1965).
[Crossref]

Boas, D. A.

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279–290 (2005).
[Crossref] [PubMed]

A. K. Dunn, T. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Boas, D.A.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
[Crossref] [PubMed]

Bolay, H.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
[Crossref] [PubMed]

Bolay, T.

A. K. Dunn, T. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Bracewell, R.

R. Bracewell, The Fourier transform and its applications (Mc Graw-Hill, 1965).

Bray, R. C.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Briers, J.D.

J.D. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[Crossref]

J.D. Briers and A.F. Fercher “A laser speckle technique for the visualization of retinal blood flow,” Proc. SPIE 369, 22–28 (1982).

Buck, A

Cen, J.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Chen, S. B.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo, and H. Gong, “Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43, 5772–5777 (2004).
[Crossref] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Chen, Z. P.

Cheng, H.

H. Cheng and T.Q. Duong; “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 15, 2188–2190 (2007).
[Crossref]

Cheng, H. Y.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo, and H. Gong, “Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43, 5772–5777 (2004).
[Crossref] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Choi, B.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
[Crossref] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model,” Microvasc. Res. 68, 143–146 (2004).
[Crossref] [PubMed]

Dale, A. M.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279–290 (2005).
[Crossref] [PubMed]

Dave, D.

Devor, A.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279–290 (2005).
[Crossref] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[Crossref] [PubMed]

Ding, Z. H.

Dunn, A. K.

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279–290 (2005).
[Crossref] [PubMed]

A. K. Dunn, T. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Dunn, A.K.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
[Crossref] [PubMed]

Duong, T.Q.

H. Cheng and T.Q. Duong; “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 15, 2188–2190 (2007).
[Crossref]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Fercher, A.F.

J.D. Briers and A.F. Fercher “A laser speckle technique for the visualization of retinal blood flow,” Proc. SPIE 369, 22–28 (1982).

Forrester, K. R.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
[Crossref] [PubMed]

Gong, H.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo, and H. Gong, “Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43, 5772–5777 (2004).
[Crossref] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).

Goodman, J.W.

J.W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE,  53, 1688 (1965).
[Crossref]

Goto, W.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

Guiou, M. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
[Crossref] [PubMed]

He, X. W.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

Hirao, M.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

Huang, Z.H.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
[Crossref] [PubMed]

Ikeda, T.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model,” Microvasc. Res. 68, 143–146 (2004).
[Crossref] [PubMed]

Kelly, K. M.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

Kobayashi, T.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

Leonard, C.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
[Crossref] [PubMed]

Lotfi, J.

B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
[Crossref] [PubMed]

Luo, Q. M.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo, and H. Gong, “Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43, 5772–5777 (2004).
[Crossref] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Luo, W. H.

Miao, J. J.

Milner, T. E.

Moskowitz, M. A.

A. K. Dunn, T. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Moskowitz, M.A.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
[Crossref] [PubMed]

Nelson, J. S.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model,” Microvasc. Res. 68, 143–146 (2004).
[Crossref] [PubMed]

H. W. Ren, Z. H. Ding, Y. H. Zhao, J. J. Miao, J. S. Nelson, and Z. P. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27, 1702–1704 (2002).
[Crossref]

Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
[Crossref] [PubMed]

Nelson, J.S.

B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
[Crossref] [PubMed]

Nemoto, M.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
[Crossref] [PubMed]

Oku, H.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

Osann, K.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

Ramirez-San-Juan, J. C.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

Ramirez-San-Juan, J.C.

B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
[Crossref] [PubMed]

Ren, H. W.

Reuter, U.

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
[Crossref] [PubMed]

Richards, G.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

Scheffold, F

Sheth, S. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
[Crossref] [PubMed]

Smith, T. K.

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

Stewart, C.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
[Crossref] [PubMed]

Sugiyama, T.

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

Toga, A. W.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
[Crossref] [PubMed]

Tulip, J.

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
[Crossref] [PubMed]

Völker, A

Walker, M. A.

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
[Crossref] [PubMed]

Weber, B

Webster, S.

J.D. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[Crossref]

Yuan, S.

Zakharov, P

Zeng, S. Q.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo, and H. Gong, “Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle,” Appl. Opt. 43, 5772–5777 (2004).
[Crossref] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

Zhao, Y. H.

Appl. Opt. (2)

Exp. Eye Res. (1)

M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi, and T. Ikeda, “Effects of adenosine on optic nerve head circulation in rabbits,” Exp. Eye Res. 79, 729–735 (2004).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, “A laser speckle imaging technique for measuring tissue perfusion,” IEEE Trans. Biomed. Eng. 51, 2074–2084 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

B. Choi, J.C. Ramirez-San-Juan, J. Lotfi, and J.S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11, 041129 (2006).
[Crossref] [PubMed]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[Crossref]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559–564 (2003).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab (1)

S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab 25, 830–841 (2005).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, T. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann, and K. M. Kelly, “Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation,” Lasers Surg. Med.,  38, 532–539 (2006).
[Crossref] [PubMed]

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model,” Microvasc. Res. 68, 143–146 (2004).
[Crossref] [PubMed]

Nat. Med. (1)

H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, and M.A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 136–142 (2002).
[Crossref] [PubMed]

Neuroimage (1)

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279–290 (2005).
[Crossref] [PubMed]

Opt. Commun. (2)

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

J.D. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[Crossref]

Opt. Lett. (4)

Proc. IEEE (1)

J.W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE,  53, 1688 (1965).
[Crossref]

Proc. SPIE (1)

J.D. Briers and A.F. Fercher “A laser speckle technique for the visualization of retinal blood flow,” Proc. SPIE 369, 22–28 (1982).

Other (2)

R. Bracewell, The Fourier transform and its applications (Mc Graw-Hill, 1965).

J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig 1.
Fig 1.

Use of either Lorentzian and Gaussian velocity distributions (Eqs. 3 and 4 respectively) result in distinct relationships between C and the ratio T/τc (which is proportional to SFI)

Fig. 2.
Fig. 2.

Use of either Lorentzian and rederived Gaussian speckle imaging equations (Eqs. 3 and 10 respectively) results in identical mapping of C to the ratio T/τc for 0<C<0.6.

Fig 3.
Fig 3.

Representative speckle contrast image of a microvascular network in a rodent dorsal skinfold window chamber model. Of the ~1.4 million pixels comprising the image, only 2718 (~0.2%) of the pixels have C values greater than 0.6.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

C 2 = σ 2 I 2 = ( 1 T ) 0 T γ ( t ) 2 dt
γ ( t ) = exp ( t τ c ) ,
C = { ( τ c 2 T ) [ 1 exp ( 2 T τ c ) ] } 1 2
C = [ ( π 1 2 2 ) ( τ c T ) erf ( T τ c ) ] 1 2
γ ( t ) = exp ( t 2 2 τ c 2 ) ,
τ cl = 2 TC 2
τ cg = 2 TC 2 ( π 1 2 ) ,
1 τ cg = ( π 1 2 ) ( 1 τ cl )
τ c = γ ( t ) 2 dt
γ ( t ) = exp ( π t 2 2 τ c 2 )
C = [ ( 1 2 ) ( τ c T ) erf ( π 1 2 T τ c ) ] 1 2
τ cga = 2 TC 2
T τ cl = ( 1 C 2 )
T τ cga = ( 3 π ) 1 2 ( 1 C 2 ) 1 2
C = [ ( τ c lg T ) + ( 1 2 ) ( τ c lg T ) 2 [ exp ( 2 T τ c lg ) 1 ] ] 1 2
C = ( ( τ cgg T ) erf ( π 1 2 T τ cgg ) ( 1 π ) ( τ cgg T ) 2 { 1 exp [ π ( T τ cgg ) 2 ] } ) 1 2 ,
1 τ c lg = 1 TC 2 = 1 τ cgg
( S N ) rms = T τ c .

Metrics