Abstract

We generate experimentally optical bottle beams from incoherent double-charge white-light vortices, and show that their parameters can be efficiently controlled by varying the beam focusing conditions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
    [CrossRef] [PubMed]
  3. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  4. T. Kuga, “Novel optical trap of atoms with a doughnut beam”, Phys. Rev. Lett. 78, 4713–4716 (1997).
    [CrossRef]
  5. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules”, IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
    [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation”, Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  7. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30. 469–492 (1998).
    [CrossRef]
  8. R. Ozeri, “Large-volume single-beam dark optical trap for atoms using binary phase elements”, J. Opt. Soc. Am. B 17, 1113–1116 (2000).
    [CrossRef]
  9. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam”, Opt. Lett. 25, 191–193 (2000).
    [CrossRef]
  10. N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light”, Opt. Commun. 279, 229–234 (2007).
    [CrossRef]
  11. P. Rudy, R. Ejnisman, A. Rahman, S. Lee, and N. P. Bigelow, “An all optical dynamical dark trap for neutral atoms,” Opt. Express 8, 159–165 (2001).
    [CrossRef] [PubMed]
  12. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R)–031406(R) (2000).
    [CrossRef]
  13. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in: Progress in Optics, Vol. 42, Ed. E. Wolf (Elsevier, Amstredam, 2001).
  14. M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
    [CrossRef]
  15. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
    [CrossRef]
  16. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop “Alignment or spinning of laser-trapped microscopic waveplates” Nature 394, 348–350 (1998).
    [CrossRef]
  17. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  18. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Microrheology Using Rotating Laser-Trapped Particles,” Phys. Rev. Lett. 92, 198104–198107 (2004).
    [CrossRef] [PubMed]
  19. M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, “Optically driven nanorotors: Experiments and model calculations”, J. Nanosc. Nanotechn. 7, 1800–1803 (2007).
    [CrossRef]
  20. Y. Roichman, A. Waldron, E. Gardel, and D.G. Grier, “Optical traps with geometric aberrations”, Appl. Opt. 45, 3425–3429 (2006).
    [CrossRef] [PubMed]
  21. R. K. Singh, P Senthilkumaran, and Kehar Singh, The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background J. Opt. A : Pure Appl. Opt.9, 543–554 (2007).
    [CrossRef]
  22. R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma”, Opt. Commun. 281, 923–934 (2008).
    [CrossRef]
  23. J. X. Pu, X. Y. Liu, and S. Nemoto, “Partially coherent bottle beams”, Opt. Commun. 252, 7–11 (2005).
    [CrossRef]
  24. J. X. Pu, M. W. Dong, and T. Wang, “Generation of adjustable partially coherent bottle beams by use of an axicon-len system,” Appl. Opt. 45, 7553–7556 (2006).
    [CrossRef] [PubMed]
  25. L. Rao, X. Zheng, Z. Wang, and P. Yei, “Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams”, Opt. Commun. 281, 1358–1365 (2008).
    [CrossRef]
  26. Z. M. Zhang, J. Pu, and X. Q. Wang, “Focusing of partially coherent Bessel-Gaussian beams through a high-numerical-aperture objective”, Opt. Lett. 33, 49–51 (2008).
    [CrossRef]
  27. A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc.Am. A 20, 163–171 (2003).
    [CrossRef]
  28. A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
    [CrossRef]
  29. V. Shvedov, W. Krolikowski, A. Volyar, D. N. Neshev, A. S. Desyatnikov, and Yu. S. Kivshar, “Focusing and correlation properties of white-light optical vortices,” Opt. Express 13, 7393–7398 (2005).
    [CrossRef] [PubMed]
  30. G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
    [CrossRef]
  31. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett. 92, 143905–143908 (2004).
    [CrossRef] [PubMed]
  32. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory”, J. Opt. Soc. Am. B 21, 1895–1898 (2004).
    [CrossRef]
  33. T. van Dijk, G. Gbur, and T.D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A,  25, 575–581 (2008).
    [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics (Pergaman, Oxfod, 1969).
  35. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics”, J. Opt. Soc. Am. 60, 1168–1177 (1970).
    [CrossRef]

2008 (5)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma”, Opt. Commun. 281, 923–934 (2008).
[CrossRef]

L. Rao, X. Zheng, Z. Wang, and P. Yei, “Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams”, Opt. Commun. 281, 1358–1365 (2008).
[CrossRef]

Z. M. Zhang, J. Pu, and X. Q. Wang, “Focusing of partially coherent Bessel-Gaussian beams through a high-numerical-aperture objective”, Opt. Lett. 33, 49–51 (2008).
[CrossRef]

T. van Dijk, G. Gbur, and T.D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A,  25, 575–581 (2008).
[CrossRef]

2007 (2)

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, “Optically driven nanorotors: Experiments and model calculations”, J. Nanosc. Nanotechn. 7, 1800–1803 (2007).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light”, Opt. Commun. 279, 229–234 (2007).
[CrossRef]

2006 (2)

2005 (2)

2004 (5)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Microrheology Using Rotating Laser-Trapped Particles,” Phys. Rev. Lett. 92, 198104–198107 (2004).
[CrossRef] [PubMed]

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[CrossRef]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory”, J. Opt. Soc. Am. B 21, 1895–1898 (2004).
[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett. 92, 143905–143908 (2004).
[CrossRef] [PubMed]

2003 (4)

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc.Am. A 20, 163–171 (2003).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[CrossRef]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation”, Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (4)

R. Ozeri, “Large-volume single-beam dark optical trap for atoms using binary phase elements”, J. Opt. Soc. Am. B 17, 1113–1116 (2000).
[CrossRef]

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam”, Opt. Lett. 25, 191–193 (2000).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R)–031406(R) (2000).
[CrossRef]

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules”, IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[CrossRef]

1998 (2)

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30. 469–492 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop “Alignment or spinning of laser-trapped microscopic waveplates” Nature 394, 348–350 (1998).
[CrossRef]

1997 (1)

T. Kuga, “Novel optical trap of atoms with a doughnut beam”, Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

1986 (1)

1970 (2)

S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics”, J. Opt. Soc. Am. 60, 1168–1177 (1970).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Arkhelyuk, O. O.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[CrossRef]

Arlt, J.

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules”, IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Bigelow, N. P.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Microrheology Using Rotating Laser-Trapped Particles,” Phys. Rev. Lett. 92, 198104–198107 (2004).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bokor, N.

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light”, Opt. Commun. 279, 229–234 (2007).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergaman, Oxfod, 1969).

Chu, S.

Ciattoni, A.

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc.Am. A 20, 163–171 (2003).
[CrossRef]

Cincotti, G.

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc.Am. A 20, 163–171 (2003).
[CrossRef]

Collins, S. A.

Davidson, N.

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light”, Opt. Commun. 279, 229–234 (2007).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R)–031406(R) (2000).
[CrossRef]

Deepak, F. L.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, “Optically driven nanorotors: Experiments and model calculations”, J. Nanosc. Nanotechn. 7, 1800–1803 (2007).
[CrossRef]

Desyatnikov, A. S.

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Dong, M. W.

Dziedzic, J. M.

Ejnisman, R.

Fadeeva, T. A.

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[CrossRef]

Friedman, N.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R)–031406(R) (2000).
[CrossRef]

Friese, M. E. J.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30. 469–492 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop “Alignment or spinning of laser-trapped microscopic waveplates” Nature 394, 348–350 (1998).
[CrossRef]

Gardel, E.

Gbur, G.

T. van Dijk, G. Gbur, and T.D. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A,  25, 575–581 (2008).
[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[CrossRef]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation”, Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Grier, D.G.

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Microrheology Using Rotating Laser-Trapped Particles,” Phys. Rev. Lett. 92, 198104–198107 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop “Alignment or spinning of laser-trapped microscopic waveplates” Nature 394, 348–350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30. 469–492 (1998).
[CrossRef]

Khan, M.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, “Optically driven nanorotors: Experiments and model calculations”, J. Nanosc. Nanotechn. 7, 1800–1803 (2007).
[CrossRef]

Khaykovich, L.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R)–031406(R) (2000).
[CrossRef]

Kivshar, Yu. S.

Krolikowski, W.

Kuga, T.

T. Kuga, “Novel optical trap of atoms with a doughnut beam”, Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Lee, S.

Liu, X. Y.

J. X. Pu, X. Y. Liu, and S. Nemoto, “Partially coherent bottle beams”, Opt. Commun. 252, 7–11 (2005).
[CrossRef]

Maleev, I. D.

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory”, J. Opt. Soc. Am. B 21, 1895–1898 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett. 92, 143905–143908 (2004).
[CrossRef] [PubMed]

Marathay, A. S.

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett. 92, 143905–143908 (2004).
[CrossRef] [PubMed]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory”, J. Opt. Soc. Am. B 21, 1895–1898 (2004).
[CrossRef]

Nemoto, S.

J. X. Pu, X. Y. Liu, and S. Nemoto, “Partially coherent bottle beams”, Opt. Commun. 252, 7–11 (2005).
[CrossRef]

Neshev, D. N.

Nieminen, T. A.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Microrheology Using Rotating Laser-Trapped Particles,” Phys. Rev. Lett. 92, 198104–198107 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop “Alignment or spinning of laser-trapped microscopic waveplates” Nature 394, 348–350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30. 469–492 (1998).
[CrossRef]

Ozeri, R.

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R)–031406(R) (2000).
[CrossRef]

R. Ozeri, “Large-volume single-beam dark optical trap for atoms using binary phase elements”, J. Opt. Soc. Am. B 17, 1113–1116 (2000).
[CrossRef]

Padgett, M. J.

Palacios, D. M.

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory”, J. Opt. Soc. Am. B 21, 1895–1898 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett. 92, 143905–143908 (2004).
[CrossRef] [PubMed]

Palma, C.

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc.Am. A 20, 163–171 (2003).
[CrossRef]

Polyanskii, P. V.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[CrossRef]

Pu, J.

Pu, J. X.

Rahman, A.

Rao, C. N. R.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, “Optically driven nanorotors: Experiments and model calculations”, J. Nanosc. Nanotechn. 7, 1800–1803 (2007).
[CrossRef]

Rao, L.

L. Rao, X. Zheng, Z. Wang, and P. Yei, “Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams”, Opt. Commun. 281, 1358–1365 (2008).
[CrossRef]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Roichman, Y.

Rubinsztein-Dunlop, H.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Microrheology Using Rotating Laser-Trapped Particles,” Phys. Rev. Lett. 92, 198104–198107 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop “Alignment or spinning of laser-trapped microscopic waveplates” Nature 394, 348–350 (1998).
[CrossRef]

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30. 469–492 (1998).
[CrossRef]

Rudy, P.

Senthilkumaran, P

R. K. Singh, P Senthilkumaran, and Kehar Singh, The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background J. Opt. A : Pure Appl. Opt.9, 543–554 (2007).
[CrossRef]

Senthilkumaran, P.

R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma”, Opt. Commun. 281, 923–934 (2008).
[CrossRef]

Shvedov, V.

Singh, K.

R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma”, Opt. Commun. 281, 923–934 (2008).
[CrossRef]

Singh, Kehar

R. K. Singh, P Senthilkumaran, and Kehar Singh, The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background J. Opt. A : Pure Appl. Opt.9, 543–554 (2007).
[CrossRef]

Singh, R. K.

R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma”, Opt. Commun. 281, 923–934 (2008).
[CrossRef]

R. K. Singh, P Senthilkumaran, and Kehar Singh, The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background J. Opt. A : Pure Appl. Opt.9, 543–554 (2007).
[CrossRef]

Sood, A. K.

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, “Optically driven nanorotors: Experiments and model calculations”, J. Nanosc. Nanotechn. 7, 1800–1803 (2007).
[CrossRef]

Soskin, M. S.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[CrossRef]

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in: Progress in Optics, Vol. 42, Ed. E. Wolf (Elsevier, Amstredam, 2001).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Swartzlander, G. A.

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory”, J. Opt. Soc. Am. B 21, 1895–1898 (2004).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett. 92, 143905–143908 (2004).
[CrossRef] [PubMed]

van Dijk, T.

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in: Progress in Optics, Vol. 42, Ed. E. Wolf (Elsevier, Amstredam, 2001).

Visser, T. D.

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[CrossRef]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[CrossRef]

Visser, T.D.

Volyar, A.

Volyar, A. V.

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[CrossRef]

Waldron, A.

Wang, T.

Wang, X. Q.

Wang, Z.

L. Rao, X. Zheng, Z. Wang, and P. Yei, “Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams”, Opt. Commun. 281, 1358–1365 (2008).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Wolf, E.

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergaman, Oxfod, 1969).

Yei, P.

L. Rao, X. Zheng, Z. Wang, and P. Yei, “Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams”, Opt. Commun. 281, 1358–1365 (2008).
[CrossRef]

Zhang, Z. M.

Zheng, X.

L. Rao, X. Zheng, Z. Wang, and P. Yei, “Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams”, Opt. Commun. 281, 1358–1365 (2008).
[CrossRef]

Adv. Quantum Chem. (1)

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, “Optical trapping of absorbing particles,” Adv. Quantum Chem. 30. 469–492 (1998).
[CrossRef]

Appl. Opt. (2)

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules”, IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[CrossRef]

J. Nanosc. Nanotechn. (1)

M. Khan, A. K. Sood, F. L. Deepak, and C. N. R. Rao, “Optically driven nanorotors: Experiments and model calculations”, J. Nanosc. Nanotechn. 7, 1800–1803 (2007).
[CrossRef]

J. Opt. A (1)

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Opt. Soc.Am. A (1)

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc.Am. A 20, 163–171 (2003).
[CrossRef]

Nature (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop “Alignment or spinning of laser-trapped microscopic waveplates” Nature 394, 348–350 (1998).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation”, Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[CrossRef]

Opt. Commun. (5)

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, “Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma”, Opt. Commun. 281, 923–934 (2008).
[CrossRef]

J. X. Pu, X. Y. Liu, and S. Nemoto, “Partially coherent bottle beams”, Opt. Commun. 252, 7–11 (2005).
[CrossRef]

L. Rao, X. Zheng, Z. Wang, and P. Yei, “Generation of optical bottle beams through focusing J0-correlated Schell-model vortex beams”, Opt. Commun. 281, 1358–1365 (2008).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light”, Opt. Commun. 279, 229–234 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Spectrosc. (1)

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[CrossRef]

Phys. Rev. A (2)

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, “Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,” Phys. Rev. A 61, 031403(R)–031406(R) (2000).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of LaguerreGaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Microrheology Using Rotating Laser-Trapped Particles,” Phys. Rev. Lett. 92, 198104–198107 (2004).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

T. Kuga, “Novel optical trap of atoms with a doughnut beam”, Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett. 92, 143905–143908 (2004).
[CrossRef] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics (Pergaman, Oxfod, 1969).

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in: Progress in Optics, Vol. 42, Ed. E. Wolf (Elsevier, Amstredam, 2001).

R. K. Singh, P Senthilkumaran, and Kehar Singh, The effect of astigmatism on the diffraction of a vortex carrying beam with a Gaussian background J. Opt. A : Pure Appl. Opt.9, 543–554 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup: 1, halogen white-light source; 2, bundle of multi-mode optical fibers (D=5mm); 3, IR filter; 4, microscope objective; 5, aperture (2 mm); 6 and 12, polarizers; 7 and 11, achromatic quarter-wave plates; 8 and 10, collimation lenses; 9, uniaxial crystal (CaCO3); 13, projection lens; 14, color filters; 15, color CCD.

Fig. 2.
Fig. 2.

Experimental longitudinal and cross-section distribution of intensity of particular coherence optical vortex near the focal region. The distance between the vortex formation plane and focusing lens (f=50 mm) is 170 mm. The dark core diameter for the labeled cros-sections is: I - 160 µm; II - 180 µm; III - 200 µm; IV - 200 µm; and V - 150 µm.

Fig. 3.
Fig. 3.

Experimentallymeasured visibility of the bottle beamfor the waists (a) w 0=0.3mm (9 mm crystal) and (b) w 0=0.2 mm (1 mm crystal); source image plane is at z=0. 3. Theoretical analysis

Fig. 4.
Fig. 4.

Calculated longitudinal intensity distribution for (a) coherent, (b) highly incoherent, and (c) partially coherent (coherence angle α=0.25) vortex beams. Distance z l between the vortex plane formation and the lens (f=50 mm) position is: (a,b) z l =10 f, (c) z l =3f. Case (c) corresponds to the experimental results shown in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( P ) = S S I ( P 1 ) I ( P 2 ) γ ( P 1 , P 2 ) exp [ 2 i π λ ̅ ( s 1 s 2 ) ] s 1 s 2 Λ 1 Λ 2 * d P 1 d P 2 ,
γ ( P 1 , P 2 ) = 2 J 1 ( u ) u ( x 1 + i y 1 ) l ( x 2 i y 2 ) l ( x 1 2 + y 1 2 ) l 2 ( x 2 2 + y 2 2 ) l 2 ,

Metrics