Abstract

We performed terahertz near-field experiments on single rectangular holes with various lengths grown on an electro-optic crystal substrate with λ/100 resolution. We find that the near-field amplitude becomes proportionally larger as the rectangle becomes narrower, strongly suggesting that a constant energy passes through even for a very narrow slit. The occurrence of a large field enhancement at the fundamental localized resonance is discussed confirming the funneling of energy at the near-field.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Poynting, "On the Transfer of Energy in the Electriomagnetic Field," Philosophical Trans. of the Royal Soc. London 175, 343-361 (1884).
    [CrossRef]
  2. E. Abbe, "Beitrage zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosk. Anat. 9, 413-468 (1873).
    [CrossRef]
  3. Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
    [CrossRef] [PubMed]
  4. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han. Park, P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
    [CrossRef] [PubMed]
  5. F. Miyamaru, M. Tanaka, and M. Hangyo, "Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays," Phys. Rev. B 74, 153416 (2006).
  6. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
    [CrossRef] [PubMed]
  7. M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
    [CrossRef]
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  9. B. S. Williams, "Terahertz quantum-cascade lasers," Nat Photon 1, 517-525 (2007).
    [CrossRef]
  10. W. C. Hurlbut, Yun-Shik Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
    [CrossRef] [PubMed]
  11. J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proc. Nat. Acad. Sci. USA 103, 4808-4812 (2006).
    [CrossRef] [PubMed]
  12. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, "Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors," Opt. Express 15, 11781-11789 (2007).
    [CrossRef] [PubMed]
  13. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, amd P. C. M. Planken, "Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures," Opt. Express 16, 7407-7417 (2008).
    [CrossRef] [PubMed]
  14. N. C. J. Van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J.Opt. Soc. Am. B 21, 622-631 (2004).
    [CrossRef]
  15. D. F. Nelson and E. H. Turner, "Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide." J. Appl. Phys. 39, 3337-3343 (1968).
    [CrossRef]
  16. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, "Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices," Nano Lett. 8, 3766 (2008).
    [CrossRef] [PubMed]
  17. N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of sub-wavelength terahertz spotsizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
    [CrossRef]
  18. F. Buersgens, R. Kersting, and H. -T Chen, "Terahertz microscopy of charge carriers in semiconductors," Appl. Phys. Lett. 88, 112115 (2006).
    [CrossRef]
  19. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  20. D. M. Pozar, "Reciprocity method of analysis for printed slot-coupled microstrip antennas," IEEE Trans. Antennas Propag. 34, 1439-1446 (1986).
    [CrossRef]
  21. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  22. C. J. Bouwkamp, "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Res. Rep. 5, 401-422 (1950).
  23. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1964).

2008 (2)

2007 (5)

W. C. Hurlbut, Yun-Shik Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

W. C. Hurlbut, Yun-Shik Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, "Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors," Opt. Express 15, 11781-11789 (2007).
[CrossRef] [PubMed]

B. S. Williams, "Terahertz quantum-cascade lasers," Nat Photon 1, 517-525 (2007).
[CrossRef]

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

2006 (4)

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proc. Nat. Acad. Sci. USA 103, 4808-4812 (2006).
[CrossRef] [PubMed]

F. Miyamaru, M. Tanaka, and M. Hangyo, "Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays," Phys. Rev. B 74, 153416 (2006).

F. Buersgens, R. Kersting, and H. -T Chen, "Terahertz microscopy of charge carriers in semiconductors," Appl. Phys. Lett. 88, 112115 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han. Park, P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

2005 (1)

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

2004 (1)

N. C. J. Van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J.Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

2002 (1)

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of sub-wavelength terahertz spotsizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1996 (1)

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

1986 (1)

D. M. Pozar, "Reciprocity method of analysis for printed slot-coupled microstrip antennas," IEEE Trans. Antennas Propag. 34, 1439-1446 (1986).
[CrossRef]

1968 (1)

D. F. Nelson and E. H. Turner, "Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide." J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

1950 (1)

C. J. Bouwkamp, "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Res. Rep. 5, 401-422 (1950).

1944 (1)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

1873 (1)

E. Abbe, "Beitrage zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosk. Anat. 9, 413-468 (1873).
[CrossRef]

Abbe, E.

E. Abbe, "Beitrage zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosk. Anat. 9, 413-468 (1873).
[CrossRef]

Adam, A. J. L.

Ahn, K. J.

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, "Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices," Nano Lett. 8, 3766 (2008).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Res. Rep. 5, 401-422 (1950).

Brok, J. M.

Buersgens, F.

F. Buersgens, R. Kersting, and H. -T Chen, "Terahertz microscopy of charge carriers in semiconductors," Appl. Phys. Lett. 88, 112115 (2006).
[CrossRef]

Chen, H. -T

F. Buersgens, R. Kersting, and H. -T Chen, "Terahertz microscopy of charge carriers in semiconductors," Appl. Phys. Lett. 88, 112115 (2006).
[CrossRef]

Davidov, D.

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gallot, G.

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proc. Nat. Acad. Sci. USA 103, 4808-4812 (2006).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Golosovsky, M.

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

Hangyo, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, "Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays," Phys. Rev. B 74, 153416 (2006).

Hillenbrand, R.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, "Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices," Nano Lett. 8, 3766 (2008).
[CrossRef] [PubMed]

Huber, A. J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, "Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices," Nano Lett. 8, 3766 (2008).
[CrossRef] [PubMed]

Hurlbut, W. C.

Jang, K.-H.

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

Jeoung, S. C.

Kang, D. H.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

Kang, J. H.

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, "Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices," Nano Lett. 8, 3766 (2008).
[CrossRef] [PubMed]

Kersting, R.

F. Buersgens, R. Kersting, and H. -T Chen, "Terahertz microscopy of charge carriers in semiconductors," Appl. Phys. Lett. 88, 112115 (2006).
[CrossRef]

Khim, K. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

Kim, D. S.

Lee, J. W.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Lienau, Ch.

Martin, J. L.

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proc. Nat. Acad. Sci. USA 103, 4808-4812 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Masson, J. B.

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proc. Nat. Acad. Sci. USA 103, 4808-4812 (2006).
[CrossRef] [PubMed]

Miyamaru, F.

F. Miyamaru, M. Tanaka, and M. Hangyo, "Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays," Phys. Rev. B 74, 153416 (2006).

Moreno, E.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Nagel, M.

Nelson, D. F.

D. F. Nelson and E. H. Turner, "Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide." J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

Park, D. J.

Park, G.-S.

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

Park, Q. H.

Planken, P. C. M.

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, "Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors," Opt. Express 15, 11781-11789 (2007).
[CrossRef] [PubMed]

N. C. J. Van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J.Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of sub-wavelength terahertz spotsizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Pozar, D. M.

D. M. Pozar, "Reciprocity method of analysis for printed slot-coupled microstrip antennas," IEEE Trans. Antennas Propag. 34, 1439-1446 (1986).
[CrossRef]

Sauviat, M. P.

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proc. Nat. Acad. Sci. USA 103, 4808-4812 (2006).
[CrossRef] [PubMed]

Seo, M. A.

Shin, Y.-M.

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

So, J.-K.

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

Srivastava, A.

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

Tanaka, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, "Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays," Phys. Rev. B 74, 153416 (2006).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Turner, E. H.

D. F. Nelson and E. H. Turner, "Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide." J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

Van der Valk, N. C. J.

N. C. J. Van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J.Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of sub-wavelength terahertz spotsizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

Wenckebach, T.

N. C. J. Van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J.Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

Williams, B. S.

B. S. Williams, "Terahertz quantum-cascade lasers," Nat Photon 1, 517-525 (2007).
[CrossRef]

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, "Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices," Nano Lett. 8, 3766 (2008).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Won, J.-H.

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

Yun-Shik Lee, W. C.

Appl. Phys. Lett. (3)

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of sub-wavelength terahertz spotsizes in the near-field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002).
[CrossRef]

F. Buersgens, R. Kersting, and H. -T Chen, "Terahertz microscopy of charge carriers in semiconductors," Appl. Phys. Lett. 88, 112115 (2006).
[CrossRef]

Arch. Mikrosk. Anat. (1)

E. Abbe, "Beitrage zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosk. Anat. 9, 413-468 (1873).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

D. M. Pozar, "Reciprocity method of analysis for printed slot-coupled microstrip antennas," IEEE Trans. Antennas Propag. 34, 1439-1446 (1986).
[CrossRef]

J. Appl. Phys. (1)

D. F. Nelson and E. H. Turner, "Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide." J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

J.Opt. Soc. Am. B (1)

N. C. J. Van der Valk, T. Wenckebach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J.Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

Nano Lett. (1)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, "Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices," Nano Lett. 8, 3766 (2008).
[CrossRef] [PubMed]

Nat Photon (1)

B. S. Williams, "Terahertz quantum-cascade lasers," Nat Photon 1, 517-525 (2007).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Philips Res. Rep. (1)

C. J. Bouwkamp, "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Res. Rep. 5, 401-422 (1950).

Phys. Rev. (1)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. B (1)

F. Miyamaru, M. Tanaka, and M. Hangyo, "Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays," Phys. Rev. B 74, 153416 (2006).

Phys. Rev. Lett. (3)

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401 (2007).
[CrossRef] [PubMed]

Y.-M. Shin, J.-K. So, K.-H. Jang, J.-H. Won, A. Srivastava, and G.-S. Park, "Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons," Phys. Rev. Lett. 99, 147402, (2007).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. USA (1)

J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proc. Nat. Acad. Sci. USA 103, 4808-4812 (2006).
[CrossRef] [PubMed]

Other (2)

J. H. Poynting, "On the Transfer of Energy in the Electriomagnetic Field," Philosophical Trans. of the Royal Soc. London 175, 343-361 (1884).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Tehahertz near-field measurement of a single rectangular hole of sides ax and ay perforated in a gold metal film deposited on a piece of electro-optic crystal GaP. This system is normally irradiated by an x-polarized terahertz plane wave and electro-optic sampling is performed using a terahertz time domain spectroscopy.

Fig. 2.
Fig. 2.

Fourier-transformed images of Ex component at a rectangle of 10 µm width and 300 µm length. The Ex images are shown at (a), 0.1 THz, (b), the resonance frequency, 0.2 THz, (c), 0.6 THz, and (d), 1.0 THz, respectively.

Fig. 3.
Fig. 3.

Fourier-transformed images of Ex component around single rectangles of different widths for a fixed length. The images are shown for (a), ax = 100 µm, (b), ax = 50 µm, and (c), ax = 10 µm, respectively. The length is fixed at 300 µm. The red line on the right side is cut through the center of the rectangle. The spectra at the center of the slits for various slit aspect ratios are shown. These spectra are normalized against the high frequency plateaus (d). The integrated field amplitude over the area of the rectangle versus the width of the rectangle is shown (e). The dotted line denotes the average of the integrated values.

Fig. 4.
Fig. 4.

FDTD simulated images. A side view of an FDTD simulated image describing energy focusing onto the single slit of 10 µm width and 300 µm length at the fundamental resonance of 0.2 THz (a). FDTD simulations for the same slit at z = 0 µm (b), z = 8 µm (c), z = 16 µm (d), and z = 35 µm (e), respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E x ( x , y , ω ) = 1 2 π E x ( x , y , t ) e i ω t dt

Metrics