Abstract

We consider the use of single-photon counting detectors in coherence-domain imaging. Detectors operated in this mode exhibit reduced noise, which leads to increased sensitivity for weak light sources and weakly reflecting samples. In particular, we experimentally demonstrate the possibility of using superconducting single-photon detectors (SSPDs) for optical coherence-domain reflectometry (OCDR). These detectors are sensitive over the full spectral range that is useful for carrying out such imaging in biological samples. With counting rates as high as 100 MHz, SSPDs also offer a high rate of data acquisition if the light flux is sufficient.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  2. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
    [CrossRef] [PubMed]
  3. W. Drexler, "Ultra-high resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
    [CrossRef] [PubMed]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  5. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  6. S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parametric downconversion," Opt. Lett. 31, 253-255 (2006), co-published in Virtual Journal of Biomedical Optics.
    [CrossRef] [PubMed]
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed. (Wiley, 2007), Chaps. 11, 12, 18, and 24.
  8. M. C. Teich, "Field-theoretical treatment of photomixing," Appl. Phys. Lett. 14, 201-203 (1969).
    [CrossRef]
  9. S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parameteric downconversion," Opt. Lett. 31, 253-255 (2006).
    [CrossRef] [PubMed]
  10. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
    [CrossRef]
  11. Y. Wang, Y. Zhao, J. S. Nelson, and Z. Chen, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  12. G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
    [CrossRef]
  13. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
    [CrossRef]
  14. G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
    [CrossRef]
  15. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).
  16. W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
    [CrossRef]
  17. A. G. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Appl. Opt. 39, 173-182 (2000).
    [CrossRef]
  18. B. E. Bouma and G. J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999).
    [CrossRef]
  19. M. C. Teich, "Infrared Heterodyne Detection," Proc. IEEE 56, 37-46 (1968).
    [CrossRef]
  20. M. C. Teich, "Quantum Theory of Heterodyne Detection," in Proc. Third Photocond. Conf., E. M. Pell, ed., (Pergamon Press, New York, 1971), pp. 1-5.
  21. M. C. Teich and B. E. A. Saleh, "Photon Bunching and Antibunching," in Progress in Optics, vol. 26, edited by E. Wolf (North-Holland/Elsevier, Amsterdam, 1988), Chap. 1, pp. 1-104.
    [CrossRef]
  22. S. B. Lowen and M. C. Teich, Fractal-Based Point Processes (Wiley, 2005), Chap. 3.
    [CrossRef]
  23. T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, "Statistics of Entangled-Photon Coincidences in Parametric Downconversion," Ann. N. Y. Acad. Sci. 755, 680-686 (1995).
    [CrossRef]
  24. H. Lim, Y. Jiang, Y. Wang, Y. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
    [CrossRef] [PubMed]

2006 (2)

2005 (2)

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

H. Lim, Y. Jiang, Y. Wang, Y. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

2004 (1)

W. Drexler, "Ultra-high resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

2003 (3)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, and Z. Chen, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

2002 (1)

2001 (2)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

2000 (2)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

A. G. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Appl. Opt. 39, 173-182 (2000).
[CrossRef]

1999 (1)

1998 (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

1995 (1)

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, "Statistics of Entangled-Photon Coincidences in Parametric Downconversion," Ann. N. Y. Acad. Sci. 755, 680-686 (1995).
[CrossRef]

1992 (1)

W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

1969 (1)

M. C. Teich, "Field-theoretical treatment of photomixing," Appl. Phys. Lett. 14, 201-203 (1969).
[CrossRef]

1968 (1)

M. C. Teich, "Infrared Heterodyne Detection," Proc. IEEE 56, 37-46 (1968).
[CrossRef]

Apolonski, A.

Baney, D. M.

W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

Bizheva, K.

Boppart, S. A.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

Bouma, B. E.

B. E. Bouma and G. J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

Carrasco, S.

Chen, Z.

Chudoba, C.

Chulkova, G.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Drakinsky, V.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Drexler, W.

W. Drexler, "Ultra-high resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Fujimoto, J. G.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

Ghanta, R. K.

Gol’tsman, G. N.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Hartl, I.

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Huang, Y.

Jiang, Y.

Kaurova, N.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Knight, J. C.

Ko, T. H.

Korneev, A.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Kouminov, P.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Larchuk, T. S.

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, "Statistics of Entangled-Photon Coincidences in Parametric Downconversion," Ann. N. Y. Acad. Sci. 755, 680-686 (1995).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Leitbeg, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Li, X. D.

Lim, H.

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Milostnaya, I.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Minaeva, O.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Nasr, M. B.

Nelson, J. S.

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Pearlman, A.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Pitris, C.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

Podoleanu, A. G.

Povazay, B.

Rubtsova, I.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Russell, P. St. J.

Saleh, B. E. A.

Sattmann, H.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Scherzer, E.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sergienko, A. V.

Slysz, W.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Smirnov, K.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Sorin, W. V.

W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Tearney, G. J.

Teich, M. C.

Torner, L.

Torres, J. P.

Unterhuber, A.

Verevkin, A.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Vetterlein, M.

Voronov, B.

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Wadsworth, W. J.

Wang, Y.

Wise, F. W.

Zhang, J.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Zhao, Y.

Ann. N. Y. Acad. Sci. (1)

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, "Statistics of Entangled-Photon Coincidences in Parametric Downconversion," Ann. N. Y. Acad. Sci. 755, 680-686 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

M. C. Teich, "Field-theoretical treatment of photomixing," Appl. Phys. Lett. 14, 201-203 (1969).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, "Fabrication of nanostructured superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

J. Biomed. Opt. (1)

W. Drexler, "Ultra-high resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

Nat. Med. (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4,861-865 (1998).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitbeg, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Opt. Lett. (7)

Y. Wang, Y. Zhao, J. S. Nelson, and Z. Chen, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
[CrossRef] [PubMed]

B. E. Bouma and G. J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999).
[CrossRef]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parameteric downconversion," Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parametric downconversion," Opt. Lett. 31, 253-255 (2006), co-published in Virtual Journal of Biomedical Optics.
[CrossRef] [PubMed]

H. Lim, Y. Jiang, Y. Wang, Y. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi C (1)

G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications," Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Proc. IEEE (1)

M. C. Teich, "Infrared Heterodyne Detection," Proc. IEEE 56, 37-46 (1968).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Other (5)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed. (Wiley, 2007), Chaps. 11, 12, 18, and 24.

M. C. Teich, "Quantum Theory of Heterodyne Detection," in Proc. Third Photocond. Conf., E. M. Pell, ed., (Pergamon Press, New York, 1971), pp. 1-5.

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Antibunching," in Progress in Optics, vol. 26, edited by E. Wolf (North-Holland/Elsevier, Amsterdam, 1988), Chap. 1, pp. 1-104.
[CrossRef]

S. B. Lowen and M. C. Teich, Fractal-Based Point Processes (Wiley, 2005), Chap. 3.
[CrossRef]

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of a conventional coherence-domain reflectometry (OCDR) experiment.

Fig. 2.
Fig. 2.

Schematic of a photon-counting-based optical coherence-domain reflectometry (OCDR) experiment.

Fig. 3.
Fig. 3.

Quantum efficiency and dark-count rate vs. normalized bias current at 1.3 µm for two different temperatures (4.2 K and 2.0 K).

Fig. 4.
Fig. 4.

A schematic of the system for low-temperature operation with an SSPD. Only one of the two SSPD channels is used in the current experiment.

Fig. 5.
Fig. 5.

Oscilloscope-screen image showing the response of an SSPD to an incident train of light pulses at an 81.3 MHz repetition rate.

Fig. 6.
Fig. 6.

Photon-counting OCDR experimental arrangement using a Michelson interferometer comprising a beam-splitter (BS) and two mirrors. Mirror 1 is translated to change the length of the reference arm. Collinear spontaneous parametric downconversion generated in a 1.5-mm-thick BBO nonlinear-optical crystal (NLC), cut for type-I phase matching, serves as the optical source. D1 and D2 are dichroic components that direct the 532-nm output of the doubled Nd:YVO4 pump laser to the NLC. Dichroic D3 and Glan–Taylor polarizers P1 and P2 are used to remove unwanted wavelengths. Experiments were performed using both SPADs and SSPDs as photon-counting detectors.

Fig. 7.
Fig. 7.

OCDR interferograms measured with SPAD and SSPD single-photon detectors using the apparatus depicted in Fig. 6. A reduction in the full-width at half maximum (FWHM), corresponding to an improvement in axial resolution, is observed with the SSPD. This is a result of its broader spectral sensitivity.

Fig. 8.
Fig. 8.

Fourier transforms of the interference signals shown in Fig. 7, plotted as a function of wavelength. It is evident that the SPAD is not sensitive to wavelengths beyond 1100 nm, whereas the SSPD is sensitive in this region.

Fig. 9.
Fig. 9.

(a). Mean count rate observed at different positions of the reference mirror. Error bars denote ±1 standard deviation. Mean and standard deviations were estimated by taking 100 samples at each mirror position. (b). Ratio of count variance to count mean at different positions of the reference mirror. The measured value of this ratio is close to unity at all positions.

Fig. 10.
Fig. 10.

Single-photon axial scan of a 90-µm-thick silica window obtained with a scanning speed of 1 mm/sec and a counting time of 10 µsec per data point. The distance between the peaks is 134 µm, corresponding to the optical pathlength.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f ( 2 z c ) FT { S S ( v ) · S D ( v ) } ,
SNR = R 2 P R P S 4 k T B R f + 2 e B R P R + ( 1 + 2 ) Δ v B R 2 P R 2 ,
SNR = R P S 2 e B .
SNR = η Φ S 2 B ,
Φ S min = 2 B η .
F = var ( n ) n .

Metrics