Abstract

The double-pass intensity point-spread function was recorded in four subjects using a monochromatic source emitting at 543 nm, through a 6.7-mm diameter pupil i) at the fovea after adaptive optics correction of the ocular aberrations, ii) at the fovea without adaptive optics correction, and iii) at 2° of eccentricity with adaptive optics correction. The half-width at half-maximum of the double-pass point-spread function was narrower after correction of the ocular aberrations. At 2° of eccentricity this width was larger than at the fovea. The minimum widths were about 1.1 arcmin in dark pigmented eyes and 1.6 arcmin in light pigmented eyes. These values are 6 to 9 times larger than the width expected from diffraction alone.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Spectral reflectance of the human ocular fundus

François C. Delori and Kent P. Pflibsen
Appl. Opt. 28(6) 1061-1077 (1989)

Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry

François C. Delori, Douglas G. Goger, Billy R. Hammond, D. Max Snodderly, and Stephen A. Burns
J. Opt. Soc. Am. A 18(6) 1212-1230 (2001)

Effect of wavelength on in vivo images of the human cone mosaic

Stacey S. Choi, Julian Christou, David R. Williams, Nathan Doble, and Julianna Lin
J. Opt. Soc. Am. A 22(12) 2598-2605 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal Vision and High-Resolution Retinal Imaging through Adaptive Optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [Crossref]
  2. A. Roorda and D. R. Williams, “The Arrangement of the Three Cone Classes in the Living Human Eye,” Nature 397, 520–522 (1999).
    [Crossref] [PubMed]
  3. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive Optics Flood-Illumination Camera for High Speed Retinal Imaging,” Opt. Express 14, 4552–4569 (2006).
    [Crossref] [PubMed]
  4. A. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active Optical Depth Resolution Improvement of the Laser Tomo-graphic Scanner,” Appl. Opt. 28, 804–808 (1989).
    [Crossref] [PubMed]
  5. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive Optics Scanning Laser Ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [PubMed]
  6. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-Field-of-View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
    [Crossref]
  7. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-Optics Ultrahigh-Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [Crossref] [PubMed]
  8. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive Optics Parallel Spectral Domain Optical Coherence Tomography for Imaging the Living Retina,” Opt. Express 13, 4792–4811 (2005).
    [Crossref] [PubMed]
  9. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-Optics Optical Coherence Tomography for High-Resolution and High-Speed 3D Retinal In Vivo Imaging,” Opt. Express 13, 8532–8546 (2005).
    [Crossref] [PubMed]
  10. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive Optics Enhanced Simultaneous En-Face Optical Coherence Tomography and Scanning Laser Ophthalmoscopy,” Opt. Express 14, 3345–3353 (2006).
    [Crossref] [PubMed]
  11. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
    [Crossref]
  12. F. Flamant, “Étude de la Répartition de Lumière dans l’Image Rétinienne d’une Fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).
  13. G. Westheimer and F. W. Campbell, “Light Distribution in the Image Formed by the Living Human Eye,” J. Opt. Soc. Am. 52, 1040–1045 (1962).
    [Crossref] [PubMed]
  14. F. W. Campbell and R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. (Lond.) 186, 558–578 (1966).
  15. J. Santamaría, P. Artal, and J. Bescós, “Determination of the Point-Spread Function of Human Eyes using a Hybrid Optical-Digital Method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [Crossref] [PubMed]
  16. J. Liang and G. Westheimer, “Optical Performances of Human Eyes Derived from Double-Pass Measurements,” J. Opt. Soc. Am. A 12, 1411–1416 (1995).
    [Crossref]
  17. J. Liang and D. R. Williams, “Aberrations and Retinal Image Quality of the Normal Human Eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [Crossref]
  18. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-Pass and Interferometric Measures of the Optical Quality of the Eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
    [Crossref]
  19. P. Rodríguez and R. Navarro, “Double-Pass versus Aberrometric Modulation Transfer Function in Green Light,” J. Biomed. Opt. 12, 044,018 (2007).
    [Crossref]
  20. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of Higher Closed-Loop Bandwidths in Ocular Adaptive Optics,” Opt. Express 11, 2597–2605 (2003).
    [Crossref] [PubMed]
  21. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive Optics for Ophthalmic Applications using a Pyramid Wavefront Sensor,” Opt. Express 14, 518–526 (2006).
    [Crossref] [PubMed]
  22. E. Logean and C. Dainty, “Adaptation of the Zernike’s Phase Contrast Method for Retinal Imaging,” in The Frontiers in Optics 2007/Laser Science XXIII, OSA Technical Digest (CD), (Optical Society of America, 2007), paper JWC45.
  23. E. Logean and C. Dainty, “Imaging of Phase Objects,” (2008). European Patent # EP1964510 (A1).
  24. E. Dalimier, K. M. Hampson, and J. C. Dainty“Effects of Adaptive Optics on Visual Performance,” in Proc. SPIE: Opto-Ireland 2005: Imaging and VisionF. D. Murtagh, ed., vol. 5823, pp. 20–28 (2005).
  25. E. Dalimier and C. Dainty, “Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics,” Opt. Express 13, 4275–4285 (2005).
    [Crossref] [PubMed]
  26. American National Standard Institute, American National Standard for Safe Use of Lasers, Z136.1-2000 (Laser Institute of America, Orlando, USA, 2000).
  27. D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of Laser-Induced Retinal Injury Thresholds with Retinal Irradiated Area: 0.1-s Duration, 514-nm Exposures,” J. Biomed. Opt. 12, 024,023 (2007).
    [Crossref]
  28. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd Aberrations and Double-Pass Measurements of Retinal Image Quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [Crossref]
  29. L. Diaz-Santana and J. C. Dainty, “Effects of Retinal Scattering in the Ocular Double-Pass Process,” J. Opt. Soc. Am. A 18, 1437–1444 (2001).
    [Crossref]
  30. F. C. Delori and K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [Crossref] [PubMed]
  31. W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
    [PubMed]
  32. M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook (W. B. Saunders Compagny, Philadelphia, USA, 1971).
  33. J. J. Vos and M. A. Bouman, “Contribution of the Retina to Entoptic Scatter,” J. Opt. Soc. Am. 54, 95–100 (1964).
    [Crossref] [PubMed]
  34. R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
    [PubMed]
  35. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
    [PubMed]
  36. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [Crossref] [PubMed]
  37. E. Logean, E. Dalimier, and C. Dainty, “Double Pass Intensity Images of a Point Source after Adaptive Optics Correction of Ocular Aberrations,” in Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4196 (2008).
  38. G. J. van Blokland and D. van Norren, “Intensity and Polarization of Light Scattered at Small Angles from the Human Fovea,” Vision Res. 26, 485–494 (1986).
    [Crossref] [PubMed]
  39. J. M. Gorrand, R. Alfieri, and J.-Y. Boire, “Diffusion of the Retinal Layers of the Living Human eye,” Vision Res. 24, 1097–1106 (1984).
    [Crossref] [PubMed]

2008 (1)

E. Logean, E. Dalimier, and C. Dainty, “Double Pass Intensity Images of a Point Source after Adaptive Optics Correction of Ocular Aberrations,” in Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4196 (2008).

2007 (3)

P. Rodríguez and R. Navarro, “Double-Pass versus Aberrometric Modulation Transfer Function in Green Light,” J. Biomed. Opt. 12, 044,018 (2007).
[Crossref]

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of Laser-Induced Retinal Injury Thresholds with Retinal Irradiated Area: 0.1-s Duration, 514-nm Exposures,” J. Biomed. Opt. 12, 024,023 (2007).
[Crossref]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-Field-of-View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
[Crossref]

2006 (3)

2005 (3)

2004 (2)

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-Optics Ultrahigh-Resolution Optical Coherence Tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref] [PubMed]

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

2003 (1)

2002 (1)

2001 (1)

1999 (1)

A. Roorda and D. R. Williams, “The Arrangement of the Three Cone Classes in the Living Human Eye,” Nature 397, 520–522 (1999).
[Crossref] [PubMed]

1997 (2)

1996 (1)

R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
[PubMed]

1995 (2)

1994 (1)

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

1989 (2)

1987 (1)

1986 (2)

G. J. van Blokland and D. van Norren, “Intensity and Polarization of Light Scattered at Small Angles from the Human Fovea,” Vision Res. 26, 485–494 (1986).
[Crossref] [PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

1984 (1)

J. M. Gorrand, R. Alfieri, and J.-Y. Boire, “Diffusion of the Retinal Layers of the Living Human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

1966 (1)

F. W. Campbell and R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. (Lond.) 186, 558–578 (1966).

1964 (1)

1962 (2)

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

G. Westheimer and F. W. Campbell, “Light Distribution in the Image Formed by the Living Human Eye,” J. Opt. Soc. Am. 52, 1040–1045 (1962).
[Crossref] [PubMed]

1955 (1)

F. Flamant, “Étude de la Répartition de Lumière dans l’Image Rétinienne d’une Fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Alfieri, R.

J. M. Gorrand, R. Alfieri, and J.-Y. Boire, “Diffusion of the Retinal Layers of the Living Human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

Alvarado, J. A.

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook (W. B. Saunders Compagny, Philadelphia, USA, 1971).

Artal, P.

Asrani, S.

R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
[PubMed]

Bescós, J.

Bille, J. F.

Boire, J.-Y.

J. M. Gorrand, R. Alfieri, and J.-Y. Boire, “Diffusion of the Retinal Layers of the Living Human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

Bouman, M. A.

Bower, B. A.

Bradu, A.

Brainard, D. H.

Burns, S. A.

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. (Lond.) 186, 558–578 (1966).

G. Westheimer and F. W. Campbell, “Light Distribution in the Image Formed by the Living Human Eye,” J. Opt. Soc. Am. 52, 1040–1045 (1962).
[Crossref] [PubMed]

Campbell, M. C. W.

Chamot, S. R.

Chan, G.

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

Choi, S.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

D. G. III, F. H.

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

Dainty, C.

E. Logean, E. Dalimier, and C. Dainty, “Double Pass Intensity Images of a Point Source after Adaptive Optics Correction of Ocular Aberrations,” in Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4196 (2008).

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive Optics Enhanced Simultaneous En-Face Optical Coherence Tomography and Scanning Laser Ophthalmoscopy,” Opt. Express 14, 3345–3353 (2006).
[Crossref] [PubMed]

S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive Optics for Ophthalmic Applications using a Pyramid Wavefront Sensor,” Opt. Express 14, 518–526 (2006).
[Crossref] [PubMed]

E. Dalimier and C. Dainty, “Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics,” Opt. Express 13, 4275–4285 (2005).
[Crossref] [PubMed]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of Higher Closed-Loop Bandwidths in Ocular Adaptive Optics,” Opt. Express 11, 2597–2605 (2003).
[Crossref] [PubMed]

E. Logean and C. Dainty, “Adaptation of the Zernike’s Phase Contrast Method for Retinal Imaging,” in The Frontiers in Optics 2007/Laser Science XXIII, OSA Technical Digest (CD), (Optical Society of America, 2007), paper JWC45.

E. Logean and C. Dainty, “Imaging of Phase Objects,” (2008). European Patent # EP1964510 (A1).

Dainty, J. C.

L. Diaz-Santana and J. C. Dainty, “Effects of Retinal Scattering in the Ocular Double-Pass Process,” J. Opt. Soc. Am. A 18, 1437–1444 (2001).
[Crossref]

E. Dalimier, K. M. Hampson, and J. C. Dainty“Effects of Adaptive Optics on Visual Performance,” in Proc. SPIE: Opto-Ireland 2005: Imaging and VisionF. D. Murtagh, ed., vol. 5823, pp. 20–28 (2005).

Dalimier, E.

E. Logean, E. Dalimier, and C. Dainty, “Double Pass Intensity Images of a Point Source after Adaptive Optics Correction of Ocular Aberrations,” in Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4196 (2008).

E. Dalimier and C. Dainty, “Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics,” Opt. Express 13, 4275–4285 (2005).
[Crossref] [PubMed]

E. Dalimier, K. M. Hampson, and J. C. Dainty“Effects of Adaptive Optics on Visual Performance,” in Proc. SPIE: Opto-Ireland 2005: Imaging and VisionF. D. Murtagh, ed., vol. 5823, pp. 20–28 (2005).

Delori, F. C.

F. C. Delori and K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Appl. Opt. 28, 1061–1077 (1989).
[Crossref] [PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Diaz-Santana, L.

Donnelly III, W. J.

Dreher, A. W.

Drexler, W.

Edsall, P.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of Laser-Induced Retinal Injury Thresholds with Retinal Irradiated Area: 0.1-s Duration, 514-nm Exposures,” J. Biomed. Opt. 12, 024,023 (2007).
[Crossref]

Elsner, A. E.

Esposito, S.

Fercher, A. F.

Ferguson, D.

Fernández, E. J.

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Flamant, F.

F. Flamant, “Étude de la Répartition de Lumière dans l’Image Rétinienne d’une Fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Gargasson, J.-F. L.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Gasson, P.

Geeraets, W. J.

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

Gendron, E.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Glanc, M.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Gorrand, J. M.

J. M. Gorrand, R. Alfieri, and J.-Y. Boire, “Diffusion of the Retinal Layers of the Living Human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. (Lond.) 186, 558–578 (1966).

Ham, J. W. T.

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

Hammer, D. X.

Hampson, K. M.

E. Dalimier, K. M. Hampson, and J. C. Dainty“Effects of Adaptive Optics on Visual Performance,” in Proc. SPIE: Opto-Ireland 2005: Imaging and VisionF. D. Murtagh, ed., vol. 5823, pp. 20–28 (2005).

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Herbert, T. J.

Hermann, B.

Hogan, M. J.

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook (W. B. Saunders Compagny, Philadelphia, USA, 1971).

Izatt, J. A.

Jones, S. M.

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Lacombe, F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Lafaille, D.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Laut, S.

Léna, P.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Liang, J.

Logean, E.

E. Logean, E. Dalimier, and C. Dainty, “Double Pass Intensity Images of a Point Source after Adaptive Optics Correction of Ocular Aberrations,” in Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4196 (2008).

E. Logean and C. Dainty, “Imaging of Phase Objects,” (2008). European Patent # EP1964510 (A1).

E. Logean and C. Dainty, “Adaptation of the Zernike’s Phase Contrast Method for Retinal Imaging,” in The Frontiers in Optics 2007/Laser Science XXIII, OSA Technical Digest (CD), (Optical Society of America, 2007), paper JWC45.

Lund, D. J.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of Laser-Induced Retinal Injury Thresholds with Retinal Irradiated Area: 0.1-s Duration, 514-nm Exposures,” J. Biomed. Opt. 12, 024,023 (2007).
[Crossref]

Marcos, S.

McMahon, M. J.

Merino, D.

Miller, D. T.

Mori, M.

R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
[PubMed]

Munro, I.

Navarro, R.

Olivier, S. S.

Pflibsen, K. P.

Podoleanu, A. G.

Prieto, P. M.

Qu, J.

Queener, H.

Rha, J.

Rodríguez, P.

P. Rodríguez and R. Navarro, “Double-Pass versus Aberrometric Modulation Transfer Function in Green Light,” J. Biomed. Opt. 12, 044,018 (2007).
[Crossref]

Romero-Borja, F.

Roorda, A.

Santamaría, J.

Sattmann, H.

Schmidt,

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

Schulmeister, K.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of Laser-Induced Retinal Injury Thresholds with Retinal Irradiated Area: 0.1-s Duration, 514-nm Exposures,” J. Biomed. Opt. 12, 024,023 (2007).
[Crossref]

Shahidi, M.

R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
[PubMed]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Stuck, B. E.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of Laser-Induced Retinal Injury Thresholds with Retinal Irradiated Area: 0.1-s Duration, 514-nm Exposures,” J. Biomed. Opt. 12, 024,023 (2007).
[Crossref]

Thorn, K. E.

Torti, C.

Tumbar, R.

Unterhuber, A.

van Blokland, G. J.

G. J. van Blokland and D. van Norren, “Intensity and Polarization of Light Scattered at Small Angles from the Human Fovea,” Vision Res. 26, 485–494 (1986).
[Crossref] [PubMed]

van Norren, D.

G. J. van Blokland and D. van Norren, “Intensity and Polarization of Light Scattered at Small Angles from the Human Fovea,” Vision Res. 26, 485–494 (1986).
[Crossref] [PubMed]

Vos, J. J.

Weddell, J. E.

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook (W. B. Saunders Compagny, Philadelphia, USA, 1971).

Weinreb, R. N.

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Werner, J. S.

Westheimer, G.

Williams, D. R.

Williams, R. C.

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Zawadzki, R. J.

Zeimer, R.

R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
[PubMed]

Zhang, Y.

Zhao, M.

Zou, S.

R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
[PubMed]

Appl. Opt. (2)

in Invest. Ophthalmol. Vis. Sci. (1)

E. Logean, E. Dalimier, and C. Dainty, “Double Pass Intensity Images of a Point Source after Adaptive Optics Correction of Ocular Aberrations,” in Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4196 (2008).

Invest. Ophthalmol. (1)

W. J. Geeraets, R. C. Williams, G. Chan, J. W. T. Ham, F. H. D. G. III, and Schmidt, “The Relative Absorption of Thermal Energy in Retina and Choroid,” Invest. Ophthalmol. 1, 340–347 (1962).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

R. Zeimer, M. Shahidi, M. Mori, S. Zou, and S. Asrani, “A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole,” Invest. Ophthalmol. Vis. Sci. 37, 1994–2001 (1996).
[PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

J. Biomed. Opt. (2)

P. Rodríguez and R. Navarro, “Double-Pass versus Aberrometric Modulation Transfer Function in Green Light,” J. Biomed. Opt. 12, 044,018 (2007).
[Crossref]

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of Laser-Induced Retinal Injury Thresholds with Retinal Irradiated Area: 0.1-s Duration, 514-nm Exposures,” J. Biomed. Opt. 12, 024,023 (2007).
[Crossref]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human Photoreceptor Topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (8)

J. Physiol. (Lond.) (1)

F. W. Campbell and R. W. Gubisch, “Optical Quality of the Human Eye,” J. Physiol. (Lond.) 186, 558–578 (1966).

Nature (1)

A. Roorda and D. R. Williams, “The Arrangement of the Three Cone Classes in the Living Human Eye,” Nature 397, 520–522 (1999).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, “Towards Wide-Field Retinal Imaging with Adaptive Optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Opt. Express (8)

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive Optics Flood-Illumination Camera for High Speed Retinal Imaging,” Opt. Express 14, 4552–4569 (2006).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive Optics Scanning Laser Ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive Optics Parallel Spectral Domain Optical Coherence Tomography for Imaging the Living Retina,” Opt. Express 13, 4792–4811 (2005).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-Optics Optical Coherence Tomography for High-Resolution and High-Speed 3D Retinal In Vivo Imaging,” Opt. Express 13, 8532–8546 (2005).
[Crossref] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive Optics Enhanced Simultaneous En-Face Optical Coherence Tomography and Scanning Laser Ophthalmoscopy,” Opt. Express 14, 3345–3353 (2006).
[Crossref] [PubMed]

E. Dalimier and C. Dainty, “Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics,” Opt. Express 13, 4275–4285 (2005).
[Crossref] [PubMed]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of Higher Closed-Loop Bandwidths in Ocular Adaptive Optics,” Opt. Express 11, 2597–2605 (2003).
[Crossref] [PubMed]

S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive Optics for Ophthalmic Applications using a Pyramid Wavefront Sensor,” Opt. Express 14, 518–526 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Rev. Opt. Theor. Instrum. (1)

F. Flamant, “Étude de la Répartition de Lumière dans l’Image Rétinienne d’une Fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Vision Res. (2)

G. J. van Blokland and D. van Norren, “Intensity and Polarization of Light Scattered at Small Angles from the Human Fovea,” Vision Res. 26, 485–494 (1986).
[Crossref] [PubMed]

J. M. Gorrand, R. Alfieri, and J.-Y. Boire, “Diffusion of the Retinal Layers of the Living Human eye,” Vision Res. 24, 1097–1106 (1984).
[Crossref] [PubMed]

Other (5)

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook (W. B. Saunders Compagny, Philadelphia, USA, 1971).

E. Logean and C. Dainty, “Adaptation of the Zernike’s Phase Contrast Method for Retinal Imaging,” in The Frontiers in Optics 2007/Laser Science XXIII, OSA Technical Digest (CD), (Optical Society of America, 2007), paper JWC45.

E. Logean and C. Dainty, “Imaging of Phase Objects,” (2008). European Patent # EP1964510 (A1).

E. Dalimier, K. M. Hampson, and J. C. Dainty“Effects of Adaptive Optics on Visual Performance,” in Proc. SPIE: Opto-Ireland 2005: Imaging and VisionF. D. Murtagh, ed., vol. 5823, pp. 20–28 (2005).

American National Standard Institute, American National Standard for Safe Use of Lasers, Z136.1-2000 (Laser Institute of America, Orlando, USA, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic drawing of the optical system, CCD charge coupled device, BS beam splitter (90 % transmission, 10 % reflection), DBS dichroic beam splitter, L lens, OL ophthalmic lens, B laser beams, DM deformable mirror, WS wavefront sensor

Fig. 2.
Fig. 2.

Single pass PSF image of the system illumination (left) and observation (right) and the corresponding radial profile of intensity (CCD camera analog to digital counts, ADU). The image width is 4.0 arcmin.

Fig. 3.
Fig. 3.

Typical results obtained for the four subjects A to D (Series 1, 0 µm). The first line shows the RMS wavefront aberration during AO correction. The following lines show the measured double-pass PSF image (second), its radial profile of intensity with the Lorentzian fit (third), the reconstructed double-pass PSF (fourth) and its radial profile (sixth), all related to the WS data of the first line. All PSF images have a width of 8 arcmin.

Fig. 4.
Fig. 4.

HWHM of the double-pass PSF for the four subjects A to D and the three series; triangle at fovea without AO, black square at fovea with AO, open square at 2° of eccentricity with AO. The HWHM of the reconstructed double-pass PSF of the series with AO corrections are shown using circles. The black circle shows the data obtained at the fovea and open circle shows the data obtained at 2° of eccentricity. Error bars represent the standard deviation of the mean (N=3).

Tables (1)

Tables Icon

Table 1. Minimum HWHM in arcmin of the measured double-pass PSF obtained for each series and each subjects

Metrics