Abstract

We report generation of pure-white color by mixing red, green, blue (RGB) lights from LEDs through a novel 3×3 fiber optics color synthesizer (FOCS), which is made of hard plastic cladding fiber (HPCF). The three output ports provided an equal power for the synthesized white color with almost identical CIE color coordinates. The FOCS rendered tunable white color temperature and optical properties of the outputs were experimentally investigated in terms of uniformity in power, photometric luminance, and color coordinate. We further packaged the device and applied to small form factor back light unit (BLU) to show feasibility in illumination uniformity enhancement.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhao, Z.-l Fang, J.-c. Cui, X. Zhang, and G.-g. Mu, "Illumination system using LED sources for pocket-size projectors," Appl. Opt. 46, 522-526 (2007).
    [CrossRef] [PubMed]
  2. A. Pfortner and J. Schwider, "Red-green-blue interferometer for the metrology of discontinuous structures," Appl. Opt. 42, 667-673 (2003).
    [CrossRef] [PubMed]
  3. J. M. Desse, "Three color differential interferometry," Appl. Opt. 36, 7150-7156 (1997).
    [CrossRef]
  4. M. J. Zwanenburg, T. Dunn, A. Stich, W. Schwedler, and L. Plotz, "High-efficiency LEDs for LCD Backlights," Society for Information Display International Symposium Digest 41.2, 1222-1225 (2004).
    [CrossRef]
  5. E. Geissler, "Meeting the challenges of developing LED based projection display," Proc. SPIE 6196, 619601 (2006).
    [CrossRef]
  6. Y. Jeong, D. Lee, J. W. Lee, and K. Oh, "Fiber-Optic Color Synthesizer," Opt. Lett. 31, 2112-2114 (2006).
    [CrossRef] [PubMed]
  7. A. W. Snyder and X. H. Zheng, "Optical Fibers of Arbitrary Cross Sections," J. Opt. Soc. Am. A 3, 600-609 (1986).
    [CrossRef]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 283-284.
  9. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 229.
  10. T. A. Birks, "Twist-induced tuning in tapered fiber couplers," Appl. Opt. 28, 4226-4233 (1989).
    [CrossRef] [PubMed]
  11. V. Ruddy and G. Shaw, "Mode Coupling in Large-diameter Polymer Clad Silica Fibers," Appl. Opt. 34, 1003-1006 (1995).
    [CrossRef] [PubMed]
  12. S. Savovi�? and A. Djordjevich "Optical power flow in plastic-clad silica fibers," Appl. Opt. 41, 7588-7591 (2002).
    [CrossRef]
  13. I. Yokohama, J. Noda, and K. Okamoto, "Fiber-coupler fabrication with automatic fusion-elongation process for low excess loss and high coupling-ratio accuracy," J. Lightwave Technol. 5, 910-915 (1987).
    [CrossRef]
  14. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave. Technol. 6, 1476-1482 (1988).
    [CrossRef]
  15. S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
    [CrossRef]
  16. R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology 3rd ed., (Wiley, New York, 2000).
  17. G. Wyszecki and W. S. Stiles, Color Science Concept and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

2007 (1)

2006 (2)

E. Geissler, "Meeting the challenges of developing LED based projection display," Proc. SPIE 6196, 619601 (2006).
[CrossRef]

Y. Jeong, D. Lee, J. W. Lee, and K. Oh, "Fiber-Optic Color Synthesizer," Opt. Lett. 31, 2112-2114 (2006).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

1997 (2)

J. M. Desse, "Three color differential interferometry," Appl. Opt. 36, 7150-7156 (1997).
[CrossRef]

S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
[CrossRef]

1995 (1)

1989 (1)

1988 (1)

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave. Technol. 6, 1476-1482 (1988).
[CrossRef]

1987 (1)

I. Yokohama, J. Noda, and K. Okamoto, "Fiber-coupler fabrication with automatic fusion-elongation process for low excess loss and high coupling-ratio accuracy," J. Lightwave Technol. 5, 910-915 (1987).
[CrossRef]

1986 (1)

Bilodeau, F.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave. Technol. 6, 1476-1482 (1988).
[CrossRef]

Birks, T. A.

Desse, J. M.

Djordjevich, A.

Faucher, S.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave. Technol. 6, 1476-1482 (1988).
[CrossRef]

Fokken, G. J.

S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
[CrossRef]

Geissler, E.

E. Geissler, "Meeting the challenges of developing LED based projection display," Proc. SPIE 6196, 619601 (2006).
[CrossRef]

Gilert, B. K.

S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
[CrossRef]

Hall, S. H.

S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
[CrossRef]

Hill, K. O.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave. Technol. 6, 1476-1482 (1988).
[CrossRef]

Jeong, Y.

Johnson, D. C.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave. Technol. 6, 1476-1482 (1988).
[CrossRef]

Lee, D.

Lee, J. W.

Mattson, L. F.

S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
[CrossRef]

Noda, J.

I. Yokohama, J. Noda, and K. Okamoto, "Fiber-coupler fabrication with automatic fusion-elongation process for low excess loss and high coupling-ratio accuracy," J. Lightwave Technol. 5, 910-915 (1987).
[CrossRef]

Oh, K.

Okamoto, K.

I. Yokohama, J. Noda, and K. Okamoto, "Fiber-coupler fabrication with automatic fusion-elongation process for low excess loss and high coupling-ratio accuracy," J. Lightwave Technol. 5, 910-915 (1987).
[CrossRef]

Pfortner, A.

Ruddy, V.

Savovi??, S.

Schwider, J.

Shaw, G.

Snyder, A. W.

Walters, W. L.

S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
[CrossRef]

Yokohama, I.

I. Yokohama, J. Noda, and K. Okamoto, "Fiber-coupler fabrication with automatic fusion-elongation process for low excess loss and high coupling-ratio accuracy," J. Lightwave Technol. 5, 910-915 (1987).
[CrossRef]

Zhao, X.

Zheng, X. H.

Appl. Opt. (6)

IEEE Trans. Compon. Packag. Manuf. Technol. Part B (1)

S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilert, "VCSEL electrical packaging analysis and design and guidelines for multi-GHz applications," IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20, 191-201 (1997).
[CrossRef]

J. Lightwave Technol. (1)

I. Yokohama, J. Noda, and K. Okamoto, "Fiber-coupler fabrication with automatic fusion-elongation process for low excess loss and high coupling-ratio accuracy," J. Lightwave Technol. 5, 910-915 (1987).
[CrossRef]

J. Lightwave. Technol. (1)

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure," J. Lightwave. Technol. 6, 1476-1482 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Proc. SPIE (1)

E. Geissler, "Meeting the challenges of developing LED based projection display," Proc. SPIE 6196, 619601 (2006).
[CrossRef]

Other (5)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 283-284.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 229.

M. J. Zwanenburg, T. Dunn, A. Stich, W. Schwedler, and L. Plotz, "High-efficiency LEDs for LCD Backlights," Society for Information Display International Symposium Digest 41.2, 1222-1225 (2004).
[CrossRef]

R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology 3rd ed., (Wiley, New York, 2000).

G. Wyszecki and W. S. Stiles, Color Science Concept and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber-optic red, green, blue to three whites color splitter.

Fig. 2.
Fig. 2.

Schematic diagram showing the components for LED and HPCF input port package. Refractive index diagram and the dimensions of the used HPCF are shown in top-right.

Fig. 3.
Fig. 3.

The uniformity in the insertion loss and power splitting ratio among the three output of the proposed device.

Fig. 4.
Fig. 4.

Typical Spectrum of white color output synthesized by the proposed device.

Fig. 5.
Fig. 5.

The CIE 1931 Chromaticity Diagram of white colors from three outputs of the proposed fiber-optic white color synthesizer.

Fig. 6.
Fig. 6.

Theoretical black-body radiation determined by Plank’s law (in black line) and the correlated color temperature distribution 5000 K (D50), 5500 K (D55), 6500 K (D65), 7500 K (D75) of the three outputs from the proposed device.

Fig. 7.
Fig. 7.

The luminance distribution characteristics of the backlight utilizing the proposed device: (a) the luminance distribution as a function of the distance (D) and space (S), (b) The luminance profile of the backlight

Tables (1)

Tables Icon

Table 1. The luminance of red, green, blue, and mixed white from output ports of the proposed 3×3 HPCF coupler

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 E x 2 + 2 E y 2 + ( k 2 n 0 2 β 2 ) E + ( x 2 + y 2 ) β 2 h 2 b 2 E + 1 h 2 b 2 ( x x + y y ) E = 0
2 E x 2 + 2 E y 2 + ( k 2 n eff 2 β 2 ) E = 0
n eff 2 = [ 1 + ( x 2 + y 2 ) b 2 ] n 0 2
Luminance Uniformity = Minimum Luminiance among 25 points Maximum Luminiance among 25 points

Metrics