Abstract

We describe a simple and efficient means of using a white LED source to illuminate an optically levitated aerosol droplet to enable study of broadband Mie scattering. The backscattered resonances are imaged through a spectrograph and CCD which show high resolution Mie scattering intensity distributions across a spectral range of 480 to 700 nm. The wide spectral range allows assignment of resonance mode numbers and mode orders using conventional Mie theory calculations. Accurate droplet sizing, within ±2 nm, is possible for water–based droplets with radii between 2 µm and 8 µm. We additionally demonstrate that the refractive index dispersion can be determined from a single refractive index value at known wavelength. Finally, morphological droplet dynamics are presented showing non-linear droplet evaporation behaviour at a temporal resolution of 100 milliseconds.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Symes, R. M. Sayer, and J. P. Reid “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
    [CrossRef]
  2. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (New York, Wiley, 1998).
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986)
    [CrossRef] [PubMed]
  4. L. Mitchem and J. P. Reid “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
    [CrossRef] [PubMed]
  5. D. McGloin, “Optical Tweezers: 20 years on,” Philos. Trans. R. Soc. A 364, 3521–3527 (2006).
    [CrossRef]
  6. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
    [CrossRef] [PubMed]
  7. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
    [CrossRef] [PubMed]
  8. M. D King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 51, 16710–6711 (2004)
    [CrossRef]
  9. A. Ashkin and J. M. Dziedzic “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981)
    [CrossRef] [PubMed]
  10. P. Chýlek, J. T. Kiehl, and M. K. W. Ko “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978)
    [CrossRef]
  11. J.L. Huckaby, A.K. Ray, and B. Das, “Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra,” Appl. Opt. 33, 7112–7125 (1994)
    [CrossRef] [PubMed]
  12. M. Guillon and B. Stout “Optical trapping and binding in air: Imaging and spectroscopic analysis” Phys. Rev. A 77, 023806 (2008)
    [CrossRef]
  13. A. A. Zardini, U. K. Krieger, and C. Marcolli “White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles,” Opt. Express 14, 6951–6962 (2006)
    [CrossRef] [PubMed]
  14. M. Guillon, K. Dholakia, and D. McGloin “Optical trapping and spectral analysis of aerosols with a supercontinuum laser source,” Opt. Express 16, 7655–7664 (2008)
    [CrossRef] [PubMed]
  15. P. Li, K. Shi, and Z. Liu “Manipulation and spectroscopy of a single particle by use of white-light optical tweezers,” Opt. Lett. 30, 156–158 (2005)
    [CrossRef] [PubMed]
  16. J. B. Snow, S. Qian, and R. K. Chang “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985)
    [CrossRef] [PubMed]
  17. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  18. R. Pastel and A. Struthers, “Measuring Evaporation Rates of Laser-Trapped Droplets by Use of Fluorescent Morphology-Dependent Resonances,” Appl. Opt. 40, 2510–2514 (2001)
    [CrossRef]
  19. P. Chylek “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723 (1991)
    [CrossRef] [PubMed]
  20. J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, S. Y. Liu, and K. Young “High-precision identification in optical processes in microdroplets,” J. Opt. Soc. Am. B 10, 1955–1968, (1993)
    [CrossRef]
  21. J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
    [CrossRef] [PubMed]
  22. L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
    [CrossRef] [PubMed]
  23. J. Z. Zhang, D. H. Leach, and R. K. Chang “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988)
    [CrossRef] [PubMed]
  24. S. Rudic, R. E. H. Miles, A. J. Orr-Ewing, and J. P. Reid “Optical properties of micrometer size water droplets studied by cavity ringdown spectroscopy,” Appl. Opt. 46, 6142–6150 (2007)
    [CrossRef] [PubMed]
  25. R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985)
    [CrossRef] [PubMed]
  26. A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
    [CrossRef]
  27. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (Wiley Scientific, 1996)
    [CrossRef]
  28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley Scientific, 1998)
    [CrossRef]
  29. P. Chylek “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613
  30. S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell “Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985)
    [CrossRef] [PubMed]
  31. A MATLAB program is employed using the algorithm described by Bohren and Huffman
  32. P. Chylek, V. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983)
    [CrossRef] [PubMed]
  33. A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun.4515–4517, DOI: 10.1039/b610060k (2006)
    [CrossRef]
  34. C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Optics Commun. 245, 465–470 (2005)
    [CrossRef]
  35. E. Fallman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107–2113 (1997)
    [CrossRef] [PubMed]
  36. A. A. Zemlyanov and Y. E. Geints “Aerosol scattering of supercontinuum radiation formed upon femtosecond laser pulse filamentation in the atmosphere,” Optics Commun. 270, 47–50 (2007)
    [CrossRef]
  37. R. C. Millard and G. Seaver “An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength,” Deep-Sea Research 37, 12, 1909–1926 (1990)
    [CrossRef]
  38. Philip Laven “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42, 436–444 (2003)
    [CrossRef] [PubMed]
  39. K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
    [CrossRef]
  40. D. R. Lide, ed., CRC Handbook of Chemistry and Physics 88th Edition, (Taylor and Francis, Boca Raton, FL, 2007)
  41. I. Mishchenko and A. A. Lacis “Morphology-dependent resonances of nearly spherical particles in random orientation,” Appl. Opt. 42, 5551–5556 (2003)
    [PubMed]

2008 (6)

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

L. Mitchem and J. P. Reid “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[CrossRef] [PubMed]

M. Guillon and B. Stout “Optical trapping and binding in air: Imaging and spectroscopic analysis” Phys. Rev. A 77, 023806 (2008)
[CrossRef]

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
[CrossRef] [PubMed]

M. Guillon, K. Dholakia, and D. McGloin “Optical trapping and spectral analysis of aerosols with a supercontinuum laser source,” Opt. Express 16, 7655–7664 (2008)
[CrossRef] [PubMed]

2007 (3)

S. Rudic, R. E. H. Miles, A. J. Orr-Ewing, and J. P. Reid “Optical properties of micrometer size water droplets studied by cavity ringdown spectroscopy,” Appl. Opt. 46, 6142–6150 (2007)
[CrossRef] [PubMed]

A. A. Zemlyanov and Y. E. Geints “Aerosol scattering of supercontinuum radiation formed upon femtosecond laser pulse filamentation in the atmosphere,” Optics Commun. 270, 47–50 (2007)
[CrossRef]

K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
[CrossRef]

2006 (3)

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

D. McGloin, “Optical Tweezers: 20 years on,” Philos. Trans. R. Soc. A 364, 3521–3527 (2006).
[CrossRef]

A. A. Zardini, U. K. Krieger, and C. Marcolli “White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles,” Opt. Express 14, 6951–6962 (2006)
[CrossRef] [PubMed]

2005 (2)

P. Li, K. Shi, and Z. Liu “Manipulation and spectroscopy of a single particle by use of white-light optical tweezers,” Opt. Lett. 30, 156–158 (2005)
[CrossRef] [PubMed]

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Optics Commun. 245, 465–470 (2005)
[CrossRef]

2004 (2)

M. D King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 51, 16710–6711 (2004)
[CrossRef]

R. Symes, R. M. Sayer, and J. P. Reid “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

2003 (2)

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
[CrossRef]

Philip Laven “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42, 436–444 (2003)
[CrossRef] [PubMed]

2001 (1)

1997 (1)

1994 (1)

1993 (1)

1991 (1)

1990 (1)

R. C. Millard and G. Seaver “An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength,” Deep-Sea Research 37, 12, 1909–1926 (1990)
[CrossRef]

1988 (1)

1986 (1)

1985 (3)

1983 (1)

1981 (1)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

1978 (1)

P. Chýlek, J. T. Kiehl, and M. K. W. Ko “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978)
[CrossRef]

Anand, S.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

Ashkin, A.

Axner, O.

Bain, C. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun.4515–4517, DOI: 10.1039/b610060k (2006)
[CrossRef]

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Benner, R. E.

S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell “Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985)
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Berry, M. G.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun.4515–4517, DOI: 10.1039/b610060k (2006)
[CrossRef]

Bjorkholm, J. E.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley Scientific, 1998)
[CrossRef]

Buajarern, J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

Burnham, D. R.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

Butler, J. R.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
[CrossRef] [PubMed]

Campillo, A. J.

Chang, R. K.

J. Z. Zhang, D. H. Leach, and R. K. Chang “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988)
[CrossRef] [PubMed]

J. B. Snow, S. Qian, and R. K. Chang “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985)
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (Wiley Scientific, 1996)
[CrossRef]

Chu, S.

Chylek, P.

Chýlek, P.

P. Chýlek, J. T. Kiehl, and M. K. W. Ko “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978)
[CrossRef]

Conwell, P. R.

Creely, C. M.

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Optics Commun. 245, 465–470 (2005)
[CrossRef]

Das, B.

Dewar, N.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

Dholakia, K.

Dziedzic, J. M.

Eversole, J. D.

Fallman, E.

Geints, Y. E.

A. A. Zemlyanov and Y. E. Geints “Aerosol scattering of supercontinuum radiation formed upon femtosecond laser pulse filamentation in the atmosphere,” Optics Commun. 270, 47–50 (2007)
[CrossRef]

Gilham, R. J. J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Guillon, M.

M. Guillon and B. Stout “Optical trapping and binding in air: Imaging and spectroscopic analysis” Phys. Rev. A 77, 023806 (2008)
[CrossRef]

M. Guillon, K. Dholakia, and D. McGloin “Optical trapping and spectral analysis of aerosols with a supercontinuum laser source,” Opt. Express 16, 7655–7664 (2008)
[CrossRef] [PubMed]

Hanford, K L

K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
[CrossRef]

Hanford, K. L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
[CrossRef] [PubMed]

Hill, S. C.

Hopkins, R. J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

Huckaby, J.L.

Hudson, A J

K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley Scientific, 1998)
[CrossRef]

Huston, A. L.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
[CrossRef]

Johnston, R. L.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

Kiefer, W.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, and M. K. W. Ko “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978)
[CrossRef]

King, M. D

M. D King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 51, 16710–6711 (2004)
[CrossRef]

Knox, K J

K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
[CrossRef]

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, and M. K. W. Ko “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978)
[CrossRef]

Krieger, U. K.

Lacis, A. A.

Laven, Philip

Leach, D. H.

Letargat, R. J.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
[CrossRef]

Leung, P. T.

Li, P.

Lide, D. R.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics 88th Edition, (Taylor and Francis, Boca Raton, FL, 2007)

Lin, H.-B.

Liu, S. Y.

Liu, Z.

Maleki, L.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
[CrossRef]

Marcolli, C.

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
[CrossRef]

McGloin, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

M. Guillon, K. Dholakia, and D. McGloin “Optical trapping and spectral analysis of aerosols with a supercontinuum laser source,” Opt. Express 16, 7655–7664 (2008)
[CrossRef] [PubMed]

D. McGloin, “Optical Tweezers: 20 years on,” Philos. Trans. R. Soc. A 364, 3521–3527 (2006).
[CrossRef]

Mellor, C. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun.4515–4517, DOI: 10.1039/b610060k (2006)
[CrossRef]

Miles, R. E. H.

Millard, R. C.

R. C. Millard and G. Seaver “An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength,” Deep-Sea Research 37, 12, 1909–1926 (1990)
[CrossRef]

Mishchenko, I.

Mitchem, L

K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
[CrossRef]

Mitchem, L.

L. Mitchem and J. P. Reid “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[CrossRef] [PubMed]

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
[CrossRef] [PubMed]

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

Orr-Ewing, A. J.

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (New York, Wiley, 1998).

Pastel, R.

Petrov, D.

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Optics Commun. 245, 465–470 (2005)
[CrossRef]

Qian, S.

Ramaswamy, V.

Ray, A.K.

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Reid, J P

K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
[CrossRef]

Reid, J. P.

L. Mitchem and J. P. Reid “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[CrossRef] [PubMed]

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
[CrossRef] [PubMed]

S. Rudic, R. E. H. Miles, A. J. Orr-Ewing, and J. P. Reid “Optical properties of micrometer size water droplets studied by cavity ringdown spectroscopy,” Appl. Opt. 46, 6142–6150 (2007)
[CrossRef] [PubMed]

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

R. Symes, R. M. Sayer, and J. P. Reid “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

Rudd, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

Rudic, S.

Rushforth, C. K.

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
[CrossRef]

Sayer, R. M.

R. Symes, R. M. Sayer, and J. P. Reid “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

Seaver, G.

R. C. Millard and G. Seaver “An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength,” Deep-Sea Research 37, 12, 1909–1926 (1990)
[CrossRef]

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (New York, Wiley, 1998).

Shi, K.

Singh, G. P.

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Optics Commun. 245, 465–470 (2005)
[CrossRef]

Snow, J. B.

Stout, B.

M. Guillon and B. Stout “Optical trapping and binding in air: Imaging and spectroscopic analysis” Phys. Rev. A 77, 023806 (2008)
[CrossRef]

Struthers, A.

Summers, M. D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

Symes, R.

R. Symes, R. M. Sayer, and J. P. Reid “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

Thompson, K.C.

M. D King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 51, 16710–6711 (2004)
[CrossRef]

Thurn, R.

Treuel, L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
[CrossRef] [PubMed]

Ward, A. D.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun.4515–4517, DOI: 10.1039/b610060k (2006)
[CrossRef]

Ward, A.D.

M. D King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 51, 16710–6711 (2004)
[CrossRef]

Young, K.

Zardini, A. A.

Zemlyanov, A. A.

A. A. Zemlyanov and Y. E. Geints “Aerosol scattering of supercontinuum radiation formed upon femtosecond laser pulse filamentation in the atmosphere,” Optics Commun. 270, 47–50 (2007)
[CrossRef]

Zhang, J. Z.

Appl. Opt. (10)

A. Ashkin and J. M. Dziedzic “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981)
[CrossRef] [PubMed]

R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985)
[CrossRef] [PubMed]

S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell “Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985)
[CrossRef] [PubMed]

J.L. Huckaby, A.K. Ray, and B. Das, “Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra,” Appl. Opt. 33, 7112–7125 (1994)
[CrossRef] [PubMed]

E. Fallman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107–2113 (1997)
[CrossRef] [PubMed]

P. Chylek, V. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983)
[CrossRef] [PubMed]

R. Pastel and A. Struthers, “Measuring Evaporation Rates of Laser-Trapped Droplets by Use of Fluorescent Morphology-Dependent Resonances,” Appl. Opt. 40, 2510–2514 (2001)
[CrossRef]

Philip Laven “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42, 436–444 (2003)
[CrossRef] [PubMed]

I. Mishchenko and A. A. Lacis “Morphology-dependent resonances of nearly spherical particles in random orientation,” Appl. Opt. 42, 5551–5556 (2003)
[PubMed]

S. Rudic, R. E. H. Miles, A. J. Orr-Ewing, and J. P. Reid “Optical properties of micrometer size water droplets studied by cavity ringdown spectroscopy,” Appl. Opt. 46, 6142–6150 (2007)
[CrossRef] [PubMed]

Chem. Soc. Rev. (2)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

L. Mitchem and J. P. Reid “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756–769 (2008).
[CrossRef] [PubMed]

Deep-Sea Research (1)

R. C. Millard and G. Seaver “An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength,” Deep-Sea Research 37, 12, 1909–1926 (1990)
[CrossRef]

Faraday Discuss. (2)

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. 137, 335–350 (2008).
[CrossRef] [PubMed]

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366 (2008)
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. D King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 51, 16710–6711 (2004)
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K J Knox, J P Reid, K L Hanford, A J Hudson, and L Mitchem “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A: Pure Appl. Opt. 9, S180–S188 (2007)
[CrossRef]

J. Opt. B: Quantum semiclass. Opt. (1)

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum semiclass. Opt. 5, 272–278 (2003)
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid “Spectroscopy of Growing and Evaporating Water Droplets: Exploring the Variation in equilibrium Droplet Size with Relative Humidity,” J. Phys. Chem. A 110, 8116–8125 (2006)
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Optics Commun. (2)

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Optics Commun. 245, 465–470 (2005)
[CrossRef]

A. A. Zemlyanov and Y. E. Geints “Aerosol scattering of supercontinuum radiation formed upon femtosecond laser pulse filamentation in the atmosphere,” Optics Commun. 270, 47–50 (2007)
[CrossRef]

Philos. Trans. R. Soc. A (1)

D. McGloin, “Optical Tweezers: 20 years on,” Philos. Trans. R. Soc. A 364, 3521–3527 (2006).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

R. Symes, R. M. Sayer, and J. P. Reid “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004).
[CrossRef]

Phys. Rev. A (2)

P. Chýlek, J. T. Kiehl, and M. K. W. Ko “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978)
[CrossRef]

M. Guillon and B. Stout “Optical trapping and binding in air: Imaging and spectroscopic analysis” Phys. Rev. A 77, 023806 (2008)
[CrossRef]

Phys. Rev. Lett. (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Other (6)

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (New York, Wiley, 1998).

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (Wiley Scientific, 1996)
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley Scientific, 1998)
[CrossRef]

A MATLAB program is employed using the algorithm described by Bohren and Huffman

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun.4515–4517, DOI: 10.1039/b610060k (2006)
[CrossRef]

D. R. Lide, ed., CRC Handbook of Chemistry and Physics 88th Edition, (Taylor and Francis, Boca Raton, FL, 2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

A schematic diagram of the experimental setup

Fig. 2.
Fig. 2.

(a). The red curve is the raw backscattered spectrum obtained for a droplet of 5.01 microns in radius. The blue curve shows the white light background. Using background division, spectrum (b) is obtained. The peak at 546 nm is an instrument defect.

Fig. 3.
Fig. 3.

(a). Experimental data showing normalized backscattered spectrum of seven combined acquisitions using a 1200 g/mm grating. (b) Theoretical scattered spectrum calculated based on Mie theory for 180° backscattered light. (c) Theoretical spectrum calculated by integration over a solid acceptance angle from 120° to 180°. Calculated TE modes (coefficient b) and TM modes (coefficient a) are labeled in Fig. 3(a) and (b) respectively. First order WGMs are shown in blue and second order WGMs are labeled in red. Due to space limit, dotted lines are only draw for visualization of the alignment of the TE modes.

Fig. 4.
Fig. 4.

Images of a droplet from the microscope with (a) the white light from LED only and (b) with microscope brightfield illumination only.

Fig. 5.
Fig. 5.

Dispersion relation obtained from matching of the Mie resonance peaks and calculated based on the algorithm reported by Millard et al.

Fig. 6.
Fig. 6.

Temporal evolution of a Nd:YAG laser trapped aerosol droplet with a=1.590 µm

Fig. 7.
Fig. 7.

Temporal evolution of an argon ion laser trapped aerosol droplet showing an overall blue shift of the scattered spectrum. The constant feature at 546 nm is due to an instrument defect.

Fig. 8.
Fig. 8.

A magnification of the transient spectral shifts between t=45 s and 75 s in Fig. 6 showing multiple transition stages

Fig. 9.
Fig. 9.

The spectral evolution of a single peak (top) and its negative derivative (bottom), corresponding to the rate of droplet size reduction, during the fast transition in Fig. 7. The arrows indicate the times where the droplet appears to experience a discrete heating event.

Fig. 10.
Fig. 10.

Theoretical spectrum showing Mie resonance modes in the proximity of the 514.5 nm trapping laser. As droplet size decreases the resonances will shift to lower wavelength across the laser line.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

a n ( x , m ) = m ψ n ( m x ) ψ n ' ( x ) ψ n ( x ) ψ n ' ( m x ) m ψ n ( m x ) ξ n ' ( x ) ξ n ( x ) ψ n ' ( m x )
b n ( x , m ) = ψ n ( m x ) ψ n ' ( x ) m ψ n ( x ) ψ n ' ( m x ) ψ n ( m x ) ξ n ' ( x ) m ξ n ( x ) ψ n ' ( m x )
A n ( x , m ) = ψ n ( x ) ψ n ' ( m x ) m ψ n ( m x ) ψ n ' ( x )
B n ( x , m ) = m ψ n ( x ) ψ n ' ( m x ) ψ n ( m x ) ψ n ' ( x )
C n ( x , m ) = ξ n ( x ) ψ n ' ( m x ) m ψ n ( m x ) ξ n ' ( x )
D n ( x , m ) = m ξ n ( x ) ψ n ' ( m x ) ψ n ( m x ) ξ n ' ( x )
Δ x = tan 1 ( m 2 1 ) 1 2 ( m 2 1 ) 1 2
a = Δ x 2 π ( λ n l λ n 1 l λ n l λ n 1 l )

Metrics