Abstract

Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM’s aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter=255 µm, focal length=800 µm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter=1 µm, separation=10 µm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength=633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system - a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
    [CrossRef] [PubMed]
  2. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
    [CrossRef] [PubMed]
  3. X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based optofluidic microscope implementation method," Opt. Express 15, 16367-16375 (2007).
    [CrossRef] [PubMed]
  4. G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
    [CrossRef] [PubMed]
  5. A. G. Michette, Optical systems for soft X rays (Plenum Press, 1986), Chap. 8.
    [CrossRef]
  6. W. Chao, E. Anderson, G. P. Denbeaux, B. Harteneck, J. A. Liddle, D. L. Olynick, A. L. Pearson, F. Salmassi, C. Y. Song, and D. T. Attwood, "20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures," Opt. Lett. 28, 2019-2021 (2003).
    [CrossRef] [PubMed]
  7. E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
    [CrossRef]
  8. R. M. Henkelman and M. J. Bronskill, "Imaging extended objects with a Fresnel-zone-plate aperture," J. Opt. Soc. Am. 64, 134-137 (1974).
    [CrossRef]
  9. M. Young, "Zone plates and their aberrations," J. Opt. Soc. Am. 62, 972-976 (1972).
    [CrossRef]
  10. F. Wyrowski, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. A 7, 961-969 (1990).
    [CrossRef]
  11. A. R. Jones, "The focal properties of phase zone plates," J. Phys, D: Appl. Phys. 2, 1789-1791 (1969).
    [CrossRef]
  12. S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
    [CrossRef] [PubMed]
  13. X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006).
    [CrossRef] [PubMed]

2008

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

2007

2006

G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006).
[CrossRef] [PubMed]

2003

2002

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

1999

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

1990

1974

1972

1969

A. R. Jones, "The focal properties of phase zone plates," J. Phys, D: Appl. Phys. 2, 1789-1791 (1969).
[CrossRef]

Allbritton, N.

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

Anderson, E.

Attwood, D. T.

Bachman, M.

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

Barrett, R.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

Bronskill, M. J.

Cabrini, S.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Chao, W.

Cui, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006).
[CrossRef] [PubMed]

Denbeaux, G. P.

Di Fabrizio, E.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Erickson, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

Gentili, M.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Harteneck, B.

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based optofluidic microscope implementation method," Opt. Express 15, 16367-16375 (2007).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006).
[CrossRef] [PubMed]

Henkelman, R. M.

Hsiao, E.

Hu, S. W.

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

Jones, A. R.

A. R. Jones, "The focal properties of phase zone plates," J. Phys, D: Appl. Phys. 2, 1789-1791 (1969).
[CrossRef]

Kaulich, B.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Knapp, D. W.

Lee, L. M.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

Li, G. P.

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

Liddle, J. A.

McDowell, E. J.

Olynick, D. L.

Pearson, A. L.

Psaltis, D.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based optofluidic microscope implementation method," Opt. Express 15, 16367-16375 (2007).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006).
[CrossRef] [PubMed]

Ren, X.

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

Romanato, F.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Salmassi, F.

Sims, C. E.

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

Song, C. Y.

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

Susini, J.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Whitesides, G. M.

G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
[CrossRef] [PubMed]

Wu, J.

Wyrowski, F.

Yang, C.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based optofluidic microscope implementation method," Opt. Express 15, 16367-16375 (2007).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006).
[CrossRef] [PubMed]

Yaqoob, Z.

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

Young, M.

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

Anal. Chem.

S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys, D: Appl. Phys.

A. R. Jones, "The focal properties of phase zone plates," J. Phys, D: Appl. Phys. 2, 1789-1791 (1969).
[CrossRef]

Lab Chip

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006).
[CrossRef] [PubMed]

Nature

G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006).
[CrossRef] [PubMed]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008).
[CrossRef] [PubMed]

Other

A. G. Michette, Optical systems for soft X rays (Plenum Press, 1986), Chap. 8.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Imaging scheme of the FZP; (b) Illustration of the FZP-OFM system setup. (c) PDMS microchannel aligned and attached to the aluminum layer with tiny aperture array. (d) Microscope image of the fabricated FZP; (e) Image of the aperture array by the FZP.

Fig. 2.
Fig. 2.

(a) Experimental scheme to characterize the imaging quality of the FZP; (b) Demonstration of resolution needed to perform FZP direct imaging and FZP-OFM imaging; (c) Measured FWHM spot size of the image in x and y-direction versus the x position of a 1-µm pinhole. Pinhole images in three different positions are shown. The resolution limit of the FZP and the resolution needed for the FZP-OFM imaging are indicated.

Fig. 3.
Fig. 3.

Images of Euglena gracilis acquired by (a) FZP direct imaging; (b) FZP-OFM system; (c) Conventional microscope with 20x objective under coherent illumination; (d) Conventional microscope with 20x objective under incoherent illumination.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r m = m λ f
V = d τ
t = λ 2 ( n 1 ) = 531 nm
Δ t = L cos θ V = L d τ cos θ
δ x = V F , δ y = L sin θ
T = j L cos θ + l V = j Δ t + l V

Metrics