Abstract

An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, contact of catheter with the tissue, lesion formation, depth of penetration of the lesion, formation of char and coagulum during the ablation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cesario, A. Mahajan, and K. Shivkumar, "Lesion-forming technologies for catheter ablation of atrial fibrillation," Heart Rhythm 4, S44-S50 Suppl. S (2007).
    [CrossRef] [PubMed]
  2. P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
    [CrossRef] [PubMed]
  3. S. Nath, J. P. Dimarco, and D. E. Haines, "Basic aspects of radiofrequency catheter ablation," J. Cardiovasc. Electrophysiol. 5, 863 (1994).
    [CrossRef] [PubMed]
  4. S. Nath, C. Lynch, J. G. Whayne, and D. E. Haines, "Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle implications for catheter ablation," Circulation 88, 1826 (1993).
    [PubMed]
  5. B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
    [CrossRef] [PubMed]
  6. H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
    [CrossRef] [PubMed]
  7. A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
    [CrossRef] [PubMed]
  8. L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999).
    [CrossRef] [PubMed]
  9. M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
    [CrossRef] [PubMed]
  10. F. H. M. Wittkampf, R. N. W. Hauer, and E. O. R. Demedina, "Control of Radiofrequency Lesion Size by Power Regulation," Circulation 80, 962 (1989).
    [CrossRef] [PubMed]
  11. K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
    [CrossRef]
  12. G. J. Derbyshire, D. K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Lasers Surg. Med. 10, 28 (1990).
    [CrossRef] [PubMed]
  13. R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
    [CrossRef] [PubMed]
  14. S. Bosman, "Heat-induced structural alterations in myocardium in relation to changing optical-properties," Appl. Opt. 32, 461 (1993).
    [CrossRef] [PubMed]
  15. J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, and M. J. C. Vangemert, "Changes in the optical-properties (at 632.8 nm) of slowly heated myocardium," Appl. Opt. 32, 367 (1993).
    [CrossRef] [PubMed]
  16. R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
    [CrossRef] [PubMed]
  17. J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
    [CrossRef] [PubMed]
  18. J. L. Dinerman, R. D. Berger, and H. Calkins, "Temperature monitoring during radiofrequency ablation," J. Cardiovasc. Electrophysiol. 7, 163 (1996).
    [CrossRef] [PubMed]
  19. B. Lin, V. Chernomordik, A. Gandjbakhche, D. Matthews, and S. Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581 (2007).
    [CrossRef] [PubMed]
  20. B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
    [CrossRef]
  21. J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001).
    [CrossRef]
  22. T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004).
    [PubMed]
  23. P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006).
    [CrossRef] [PubMed]
  24. M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005).
    [CrossRef] [PubMed]
  25. S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
    [CrossRef] [PubMed]
  26. R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003).
    [CrossRef] [PubMed]
  27. A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

2008 (1)

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

2007 (2)

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

B. Lin, V. Chernomordik, A. Gandjbakhche, D. Matthews, and S. Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006).
[CrossRef] [PubMed]

2005 (1)

M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004).
[PubMed]

2003 (2)

R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003).
[CrossRef] [PubMed]

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

2001 (1)

J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001).
[CrossRef]

2000 (1)

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

1999 (3)

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999).
[CrossRef] [PubMed]

1996 (3)

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
[CrossRef] [PubMed]

J. L. Dinerman, R. D. Berger, and H. Calkins, "Temperature monitoring during radiofrequency ablation," J. Cardiovasc. Electrophysiol. 7, 163 (1996).
[CrossRef] [PubMed]

1994 (1)

S. Nath, J. P. Dimarco, and D. E. Haines, "Basic aspects of radiofrequency catheter ablation," J. Cardiovasc. Electrophysiol. 5, 863 (1994).
[CrossRef] [PubMed]

1993 (3)

1991 (1)

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

1990 (1)

G. J. Derbyshire, D. K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Lasers Surg. Med. 10, 28 (1990).
[CrossRef] [PubMed]

1989 (1)

F. H. M. Wittkampf, R. N. W. Hauer, and E. O. R. Demedina, "Control of Radiofrequency Lesion Size by Power Regulation," Circulation 80, 962 (1989).
[CrossRef] [PubMed]

Agah, R.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
[CrossRef] [PubMed]

Andersson-Engels, S.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
[CrossRef] [PubMed]

Barold, S. S.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Barton, J. K.

J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001).
[CrossRef]

Beek, J. F.

Berger, R. D.

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

J. L. Dinerman, R. D. Berger, and H. Calkins, "Temperature monitoring during radiofrequency ablation," J. Cardiovasc. Electrophysiol. 7, 163 (1996).
[CrossRef] [PubMed]

Black, J. F.

J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001).
[CrossRef]

Blokland, P.

Bogen, D. K.

G. J. Derbyshire, D. K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Lasers Surg. Med. 10, 28 (1990).
[CrossRef] [PubMed]

Bonner, R. F.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
[CrossRef] [PubMed]

Bosman, S.

Calkins, H.

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

J. L. Dinerman, R. D. Berger, and H. Calkins, "Temperature monitoring during radiofrequency ablation," J. Cardiovasc. Electrophysiol. 7, 163 (1996).
[CrossRef] [PubMed]

Cao, H.

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

Cesario, D. A.

D. A. Cesario, A. Mahajan, and K. Shivkumar, "Lesion-forming technologies for catheter ablation of atrial fibrillation," Heart Rhythm 4, S44-S50 Suppl. S (2007).
[CrossRef] [PubMed]

Chernomordik, V.

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

B. Lin, V. Chernomordik, A. Gandjbakhche, D. Matthews, and S. Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581 (2007).
[CrossRef] [PubMed]

Choy, Y. B.

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

Chuang, C. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Clement, G. T.

R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003).
[CrossRef] [PubMed]

Clementy, J.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

D'Avila, A.

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

Demedina, E. O. R.

F. H. M. Wittkampf, R. N. W. Hauer, and E. O. R. Demedina, "Control of Radiofrequency Lesion Size by Power Regulation," Circulation 80, 962 (1989).
[CrossRef] [PubMed]

Demos, S.

Demos, S. G.

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

Derbyshire, G. J.

G. J. Derbyshire, D. K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Lasers Surg. Med. 10, 28 (1990).
[CrossRef] [PubMed]

Dimarco, J. P.

S. Nath, J. P. Dimarco, and D. E. Haines, "Basic aspects of radiofrequency catheter ablation," J. Cardiovasc. Electrophysiol. 5, 863 (1994).
[CrossRef] [PubMed]

Dinerman, J. L.

J. L. Dinerman, R. D. Berger, and H. Calkins, "Temperature monitoring during radiofrequency ablation," J. Cardiovasc. Electrophysiol. 7, 163 (1996).
[CrossRef] [PubMed]

Eick, O.

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Ellenbogen, A. L.

M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005).
[CrossRef] [PubMed]

Ellenbogen, K. A.

P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006).
[CrossRef] [PubMed]

Epstein, M. R.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Frangineas, G.

J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001).
[CrossRef]

Gandjbakhche, A.

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

B. Lin, V. Chernomordik, A. Gandjbakhche, D. Matthews, and S. Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581 (2007).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
[CrossRef] [PubMed]

Garrigue, S.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Haines, D. E.

S. Nath, J. P. Dimarco, and D. E. Haines, "Basic aspects of radiofrequency catheter ablation," J. Cardiovasc. Electrophysiol. 5, 863 (1994).
[CrossRef] [PubMed]

S. Nath, C. Lynch, J. G. Whayne, and D. E. Haines, "Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle implications for catheter ablation," Circulation 88, 1826 (1993).
[PubMed]

Haissaguerre, M.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Halperin, H. R.

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

Hauer, R. N. W.

F. H. M. Wittkampf, R. N. W. Hauer, and E. O. R. Demedina, "Control of Radiofrequency Lesion Size by Power Regulation," Circulation 80, 962 (1989).
[CrossRef] [PubMed]

Hocini, M.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Huang, S. K. S.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Hynynen, K.

R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003).
[CrossRef] [PubMed]

Jackman, W. M.

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

Jais, P.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Jumrussirikul, P.

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

Jung, W.

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Keane, D.

L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999).
[CrossRef] [PubMed]

Kilicaslan, F.

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

King, R. L.

R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003).
[CrossRef] [PubMed]

Knapp, L. D.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Kotini, P.

P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006).
[CrossRef] [PubMed]

Lane, S.

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

Lardo, A. C.

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

Lavergne, T.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Lazzara, R.

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

Le Metayer, P.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Lee, F. T.

T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004).
[PubMed]

Lima, J.

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

Lin, B.

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

B. Lin, V. Chernomordik, A. Gandjbakhche, D. Matthews, and S. Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581 (2007).
[CrossRef] [PubMed]

Littmann, L.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Luderitz, B.

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Lulu, J. A.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Lynch, C.

S. Nath, C. Lynch, J. G. Whayne, and D. E. Haines, "Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle implications for catheter ablation," Circulation 88, 1826 (1993).
[PubMed]

Mahajan, A.

D. A. Cesario, A. Mahajan, and K. Shivkumar, "Lesion-forming technologies for catheter ablation of atrial fibrillation," Heart Rhythm 4, S44-S50 Suppl. S (2007).
[CrossRef] [PubMed]

Malchano, Z.

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

Marrouche, N. F.

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

Martindill, M.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Maruvada, S.

R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003).
[CrossRef] [PubMed]

Matthews, D.

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

B. Lin, V. Chernomordik, A. Gandjbakhche, D. Matthews, and S. Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581 (2007).
[CrossRef] [PubMed]

Mazgalev, T. N.

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

McPherson, C.

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

McVeigh, E. R.

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

Mohler, S.

P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006).
[CrossRef] [PubMed]

Motamedi, M.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
[CrossRef] [PubMed]

Nakagawa, H.

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

Natale, A.

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

Nath, S.

S. Nath, J. P. Dimarco, and D. E. Haines, "Basic aspects of radiofrequency catheter ablation," J. Cardiovasc. Electrophysiol. 5, 863 (1994).
[CrossRef] [PubMed]

S. Nath, C. Lynch, J. G. Whayne, and D. E. Haines, "Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle implications for catheter ablation," Circulation 88, 1826 (1993).
[PubMed]

Nossal, R.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
[CrossRef] [PubMed]

Oh, S.

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

Olsson, S. B.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
[CrossRef] [PubMed]

Ownby, E. D.

M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005).
[CrossRef] [PubMed]

Palsson, S.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
[CrossRef] [PubMed]

Pickering, J. W.

Pitha, J. V.

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

Platonov, P.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
[CrossRef] [PubMed]

Posthumus, P.

Pummer, H.

J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001).
[CrossRef]

Reddy, V. Y.

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

Reed, G.

L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999).
[CrossRef] [PubMed]

Ruskin, J.

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999).
[CrossRef] [PubMed]

Saul, J. P.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Schumacher, B.

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Shaffer, K. M.

M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005).
[CrossRef] [PubMed]

Shah, D. C.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Shivkumar, K.

D. A. Cesario, A. Mahajan, and K. Shivkumar, "Lesion-forming technologies for catheter ablation of atrial fibrillation," Heart Rhythm 4, S44-S50 Suppl. S (2007).
[CrossRef] [PubMed]

Splinter, R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Svenson, R. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Swartling, J.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
[CrossRef] [PubMed]

Takahashi, A.

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

Tatsis, G. P.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Tebbenjohanns, J.

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Techavipoo, U.

T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004).
[PubMed]

Thiagalingam, A.

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

Thompson, M.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Triedman, J. K.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Tsai, J. Z.

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

Tungjitkusolmun, S.

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

Tuntelder, J. R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Unger, M.

G. J. Derbyshire, D. K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Lasers Surg. Med. 10, 28 (1990).
[CrossRef] [PubMed]

Vangemert, M. J. C.

Varghese, T.

T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004).
[PubMed]

Von Pezold, C.

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Vorperian, V. R.

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

Walsh, E. P.

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Wazni, O.

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

Webster, J. G.

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

Whayne, J. G.

S. Nath, C. Lynch, J. G. Whayne, and D. E. Haines, "Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle implications for catheter ablation," Circulation 88, 1826 (1993).
[PubMed]

Wittkampf, F.

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Wittkampf, F. H. M.

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

F. H. M. Wittkampf, R. N. W. Hauer, and E. O. R. Demedina, "Control of Radiofrequency Lesion Size by Power Regulation," Circulation 80, 962 (1989).
[CrossRef] [PubMed]

Wood, M. A.

P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006).
[CrossRef] [PubMed]

M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005).
[CrossRef] [PubMed]

Yokoyama, K.

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

Zagzebski, J. A.

T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004).
[PubMed]

Zhang, Y. H.

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

Zhou, L.

L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999).
[CrossRef] [PubMed]

Am. J. Cardiol. (2)

P. Jais, D. C. Shah, M. Haissaguerre, A. Takahashi, T. Lavergne, M. Hocini, S. Garrigue, S. S. Barold, P. Le Metayer, and J. Clementy, "Efficacy and safety of septal and left-atrial linear ablation for atrial fibrillation," Am. J. Cardiol. 84, 139R (1999).
[CrossRef] [PubMed]

M. R. Epstein, L. D. Knapp, M. Martindill, J. A. Lulu, J. K. Triedman, H. Calkins, S. K. S. Huang, E. P. Walsh, and J. P. Saul, "Embolic complications associated with radiofrequency catheter ablation," Am. J. Cardiol. 77, 655 (1996).
[CrossRef] [PubMed]

Appl. Opt. (2)

Circulation (4)

A. C. Lardo, E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin, "Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging," Circulation,  102, 698 (2000).

F. H. M. Wittkampf, R. N. W. Hauer, and E. O. R. Demedina, "Control of Radiofrequency Lesion Size by Power Regulation," Circulation 80, 962 (1989).
[CrossRef] [PubMed]

K. Yokoyama, H. Nakagawa, F. H. M. Wittkampf, J. V. Pitha, R. Lazzara, and W. M. Jackman, "Comparison of electrode cooling between internal and open irrigation in radiofrequency ablation lesion depth and incidence of thrombus and steam pop," Circulation,  113, 11 (2006).
[CrossRef]

S. Nath, C. Lynch, J. G. Whayne, and D. E. Haines, "Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle implications for catheter ablation," Circulation 88, 1826 (1993).
[PubMed]

Europace (1)

P. Kotini, S. Mohler, K. A. Ellenbogen, and M. A. Wood, "Detection of microbubble formation during radiofrequency ablation using phonocardiography," Europace 8, 333 (2006).
[CrossRef] [PubMed]

Heart Rhythm (1)

M. A. Wood, K. M. Shaffer, A. L. Ellenbogen, and E. D. Ownby, "Microbubbles during radiofrequency catheter ablation: Composition and formation," Heart Rhythm 2, 397 (2005).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

H. Cao, S. Tungjitkusolmun, Y. B. Choy, J. Z. Tsai, V. R. Vorperian, and J. G. Webster, "Using Electrical Impedance to Predict Catheter-Endocardial Contact During RF Cardiac Ablation," IEEE Trans. Biomed. Eng. 49, 247 (2002).
[CrossRef] [PubMed]

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, and R. F. Bonner, "Dynamics of temperature dependent optical properties of tissue: Dependence on thermally induced alteration," IEEE Trans. Biomed. Eng. 43, 839 (1996).
[CrossRef] [PubMed]

J. Cardiovasc. Electrophysiol. (5)

J. L. Dinerman, R. D. Berger, and H. Calkins, "Temperature monitoring during radiofrequency ablation," J. Cardiovasc. Electrophysiol. 7, 163 (1996).
[CrossRef] [PubMed]

A. Thiagalingam, A. D'Avila, C. McPherson, Z. Malchano, J. Ruskin, and V. Y. Reddy, "Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation," J. Cardiovasc. Electrophysiol. 18, 318 (2007).
[CrossRef] [PubMed]

L. Zhou, D. Keane, G. Reed, and J. Ruskin, "Thromboembolic complications of cardiac radiofrequency catheter ablation: A review of the reported incidence, pathogenesis and current research directions," J. Cardiovasc. Electrophysiol. 10, 611 (1999).
[CrossRef] [PubMed]

S. Oh, F. Kilicaslan, Y. H. Zhang, O. Wazni, T. N. Mazgalev, A. Natale, and N. F. Marrouche, "Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: Comparison of energy profiles and chronic lesion characteristics," J. Cardiovasc. Electrophysiol. 17, 72 (2006).
[CrossRef] [PubMed]

S. Nath, J. P. Dimarco, and D. E. Haines, "Basic aspects of radiofrequency catheter ablation," J. Cardiovasc. Electrophysiol. 5, 863 (1994).
[CrossRef] [PubMed]

J. Ultrasound Med. (1)

T. Varghese, U. Techavipoo, J. A. Zagzebski, and F. T. Lee, "Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions," J. Ultrasound Med. 23, 535 (2004).
[PubMed]

Lasers Surg. Med. (2)

G. J. Derbyshire, D. K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Lasers Surg. Med. 10, 28 (1990).
[CrossRef] [PubMed]

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, "Optical-properties of normal, diseased, and laser photocoagulated myocardium at the Nd-YAG wavelength," Lasers Surg. Med. 11, 117 (1991).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Pacing Clin. Electrophysiol. (1)

B. Schumacher, O. Eick, F. Wittkampf, C. Von Pezold, J. Tebbenjohanns, W. Jung, and B. Luderitz, "Temperature response following nontraumatic low power radiofrequency application," Pacing Clin. Electrophysiol. 22, 339 (1999).
[CrossRef] [PubMed]

Proc. SPIE (2)

B. Lin, D. Matthews, V. Chernomordik, A. Gandjbakhche, S. Lane, and S. G. Demos, "Evaluation of Optical Imaging and Spectroscopy Approaches for Cardiac Tissue Depth Assessment," Proc. SPIE 6864, 68640N (2008).
[CrossRef]

J. F. Black, J. K. Barton, G. Frangineas, and H. Pummer, "Cooperative Phenomena in Two-Pulse, Two-Color Laser Photocoagulation of Cutaneous Blood Vessels," Proc. SPIE 4244, 13 (2001).
[CrossRef]

Ultrasound Med. Biol. (1)

R. L. King, G. T. Clement, S. Maruvada, and K. Hynynen, "Preliminary results using ultrasound transmission for Image-guided thermal therapy," Ultrasound Med. Biol. 29, 293 (2003).
[CrossRef] [PubMed]

Other (1)

D. A. Cesario, A. Mahajan, and K. Shivkumar, "Lesion-forming technologies for catheter ablation of atrial fibrillation," Heart Rhythm 4, S44-S50 Suppl. S (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic depicting the experimental setup. The tip of the RF ablation catheter incorporates two fibers to enable acquisition of spectra from the location of lesion formation.

Fig. 2.
Fig. 2.

Raw spectra obtained prior to, during and, after RF ablation highlight the changes in the light scattering spectrum resulting from tissue modification.

Fig. 3.
Fig. 3.

Normalized (to t = 0) spectra at different times during RF ablation of cardiac tissue

Fig. 4.
Fig. 4.

(a). The dependence of the slope of the normalized spectra on the depth of the ablated tissue for experiments performed in saline solution (circles) and heparinized blood (squares). b) The average values and standard deviation as extracted from experimental data shown in (a) for different lesion depths. Best fit using a second order polynomial is shown with solid line.

Fig. 5.
Fig. 5.

Profiles of the slope of the normalized spectrum as a function of time during 5 different ablations that resulted to lesions with depths of 1 mm, 2mm, 4mm, 6mm and 8 mm.

Fig. 6.
Fig. 6.

Normalized light scattering spectrum in the presence of blood coagulum and tissue charring from RF ablation of normal bovine cardiac tissue.

Fig. 7.
Fig. 7.

Percent difference from average value of the intensity at 710 nm (diamonds) and the intensity ratio at 910 nm over 710 nm (circles) obtained from 50 consecutive ablation measurements before the RF power was turned on.

Metrics