Abstract

Near-field rotation of a trapped particle under focused evanescent Laguerre-Gaussian beam illumination is theoretically investigated by mapping the two-dimensional transverse trapping efficiency exerting on the particle. It is revealed that the severe focal field deformation associated with a focused evanescent Laguerre-Gaussian beam causes a significant impact on the transverse trapping performance of the microparticle. Compared with the far-field trapping force, strong tangential force components have been observed in the transverse efficiency mapping, which potentially lead to rotational motions to the particle within a small trapping volume in the optical near-field.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  2. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
    [CrossRef]
  3. D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
    [CrossRef] [PubMed]
  4. A. T. O???Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
    [CrossRef]
  5. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
    [CrossRef]
  6. M. Gu, J.-B. Haumonte, J. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
    [CrossRef]
  7. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, "Optical deflection and sorting of microparticles in a near-field optical geometry," Opt. Express 16, 3712-3726 (2008).
    [CrossRef] [PubMed]
  8. S. Kuriakose, D. Morrish, X. Gan, J.W.M. Chon, K. Dholakia, M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
    [CrossRef]
  9. M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
    [CrossRef] [PubMed]
  10. M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000).
  11. B. Jia, X. Gan, and M . Gu, "Direct observation of pure focused evanescent wave of a high numerical aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86, 131110 (2005).
    [CrossRef]
  12. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  13. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
    [CrossRef]
  14. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
    [CrossRef] [PubMed]
  15. D. G. Grier. "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  16. W. M. Lee, X.-C. Yuan, and W. C. Cheong, "Optical vortex beam shaping by use of highly efficient irregular spiral phase for optical micromanipulation," Opt. Lett. 29, 1796-1798 (2004).
    [CrossRef] [PubMed]
  17. B. Jia, X. Gan, and M. Gu, "Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam," Opt. Express 13, 10360-10366 (2005).
    [CrossRef] [PubMed]
  18. D. Ganic, X. Gan, and M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Opt. Express 12, 2670-2675 (2004).
    [CrossRef] [PubMed]
  19. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
    [CrossRef] [PubMed]

2008

2007

2005

B. Jia, X. Gan, and M . Gu, "Direct observation of pure focused evanescent wave of a high numerical aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, "Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam," Opt. Express 13, 10360-10366 (2005).
[CrossRef] [PubMed]

2004

2003

D. G. Grier. "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2000

A. T. O???Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

1999

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

1998

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

1997

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

1995

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
[CrossRef] [PubMed]

1992

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

1989

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Cheong, W. C.

Chon, J.

M. Gu, J.-B. Haumonte, J. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

Chon, J.W.M.

S. Kuriakose, D. Morrish, X. Gan, J.W.M. Chon, K. Dholakia, M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Dholakia, K.

Friese, M. E. J.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

Funatsu, T.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
[CrossRef] [PubMed]

Gan, X.

S. Kuriakose, D. Morrish, X. Gan, J.W.M. Chon, K. Dholakia, M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, "Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam," Opt. Express 13, 10360-10366 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M . Gu, "Direct observation of pure focused evanescent wave of a high numerical aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Opt. Express 12, 2670-2675 (2004).
[CrossRef] [PubMed]

M. Gu, J.-B. Haumonte, J. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
[CrossRef] [PubMed]

Ganic, D.

Garcés-Chávez, V.

Grier, D. G.

D. G. Grier. "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Gu, M

B. Jia, X. Gan, and M . Gu, "Direct observation of pure focused evanescent wave of a high numerical aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Gu, M.

Harada, Y.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
[CrossRef] [PubMed]

Haumonte, J.-B.

M. Gu, J.-B. Haumonte, J. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

Heckenberg, N. R.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

Jia, B.

B. Jia, X. Gan, and M . Gu, "Direct observation of pure focused evanescent wave of a high numerical aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, "Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam," Opt. Express 13, 10360-10366 (2005).
[CrossRef] [PubMed]

Kawata, S.

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Krauss, T. F.

Kuriakose, S.

Lee, W. M.

Marchington, R. F.

Mazilu, M.

Morrish, D.

S. Kuriakose, D. Morrish, X. Gan, J.W.M. Chon, K. Dholakia, M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Nieminen, T. A.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

O???Neil, A. T.

A. T. O???Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Padgett, M. J.

A. T. O???Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Reece, P. J.

Rubinsztein-Dunlop, H.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

Saito, K.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
[CrossRef] [PubMed]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Tokunaga, M.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
[CrossRef] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Yanagida, T.

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
[CrossRef] [PubMed]

Yuan, X.-C.

Adv. Quantum Chem.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998).
[CrossRef]

Appl. Phys. Lett.

M. Gu, J.-B. Haumonte, J. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004).
[CrossRef]

S. Kuriakose, D. Morrish, X. Gan, J.W.M. Chon, K. Dholakia, M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

B. Jia, X. Gan, and M . Gu, "Direct observation of pure focused evanescent wave of a high numerical aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

Biophys. J.

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

J. Appl. Phys.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Nature

D. G. Grier. "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

T. Funatsu, Y. Harada, M. Tokunaga, K. Saito and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995).
[CrossRef] [PubMed]

Opt. Commun.

A. T. O???Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Other

M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Normalized intensity distributions (|E|2) and their field components (|Ex|2, |Ey|2, and |Ez|2) in the focal region of an objective with NA=1.65 at the coverglass (n1=1.78) and air (n2=1) interface, illuminated by annular (ρ = 0.8) LG beams of topological charges 0–3. Light polarization in x direction. Unit of axes: µm.

Fig. 2.
Fig. 2.

(a). Definition of a rotation angle α. Vx=kx sinφ, Vy=ky sinφ. (b) Rotation angle as a function of the normalized obstruction radius for topological charges 0 to 4 (NA=1.65, n1=1.78, n2=1).

Fig. 3.
Fig. 3.

Transverse trapping efficiency mapping for a polystyrene particle of 1 µm in radius across a pure focused evanescent field generated by an objective with NA=1.65 and ρ = 0.85, at the coverslip (n1=1.78) and water (n2=1.33) interface under LG beam illumination (m=0, 1, 2 and 3, light polarization in x direction).

Fig. 4.
Fig. 4.

Transverse trapping efficiency mapping for a polystyrene particle of 1 µm in radius across the focal field generated by a NA=1.2 objective at the coverslip (n1=1.51) and water (n2=1.33) interface under LG beam illumination (m=0-7, light polarization in x direction). Scale bar in (a) also applies to (b-f).

Fig. 5.
Fig. 5.

Dependence of the tangential force components on the topological charges of (a) the focused evanescent LG beams (NA=1.65, < = 0.85) (b) far-field LG beams (NA=1.2) at different radial positions (b = 0.1a, 0.3a, 0.5a and 0.7a).

Fig. 6.
Fig. 6.

Focal intensity distributions in (a-c) the focal plane and (d-f) the X-Z plane of (a,d) an evanescent LG beam of m=16, focused by NA=1.65 objective; (b,e) a far-field LG beam of m=8, focused by a NA=0.9 objective; (c,f) a far-field LG beam of m=3, focused by a NA=0.4 objective.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = 1 4 π 0 2 π 0 π { ε 2 E r E + H r H 1 2 ( ε 2 E 2 + H 2 ) r ̂ } r 2 sin φ d φ d θ

Metrics