Abstract

We demonstrate ultrahigh speed spectral/Fourier domain optical coherence tomography (OCT) using an ultrahigh speed CMOS line scan camera at rates of 70,000–312,500 axial scans per second. Several design configurations are characterized to illustrate trade-offs between acquisition speed, resolution, imaging range, sensitivity and sensitivity roll-off performance. Ultrahigh resolution OCT with 2.5–3.0 micron axial image resolution is demonstrated at ~100,000 axial scans per second. A high resolution spectrometer design improves sensitivity roll-off and imaging range performance, trading off imaging speed to 70,000 axial scans per second. Ultrahigh speed imaging at > 300,000 axial scans per second with standard image resolution is also demonstrated. Ophthalmic OCT imaging of the normal human retina is investigated. The high acquisition speeds enable dense raster scanning to acquire densely sampled volumetric three dimensional OCT (3D-OCT) data sets of the macula and optic disc with minimal motion artifacts. Imaging with ~8–9 micron axial resolution at 250,000 axial scans per second, a 512 × 512 × 400 voxel volumetric 3D-OCT data set can be acquired in only ~1.3 seconds. Orthogonal registration scans are used to register OCT raster scans and remove residual axial eye motion, resulting in 3D-OCT data sets which preserve retinal topography. Rapid repetitive imaging over small volumes can visualize small retinal features without motion induced distortions and enables volume registration to remove eye motion. Cone photoreceptors in some regions of the retina can be visualized without adaptive optics or active eye tracking. Rapid repetitive imaging of 3D volumes also provides dynamic volumetric information (4D-OCT) which is shown to enhance visualization of retinal capillaries and should enable functional imaging. Improvements in the speed and performance of 3D-OCT volumetric imaging promise to enable earlier diagnosis and improved monitoring of disease progression and response to therapy in ophthalmology, as well as have a wide range of research and clinical applications in other areas.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
    [CrossRef]
  2. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Inc., New Jersey, USA, 2004).
  3. C. K. Hitzenberger, "Optical measurement of the axial eye length by laser Doppler interferometry." Invest. Ophthalmol. Vis. Sci. 32, 616-624 (1991).
    [PubMed]
  4. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett.  18, 1864-1866 (1993). http://ol.osa.org/abstract.cfm?URI=ol-18-21-1864.
    [CrossRef]
  5. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).
  6. U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, "Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser," Proc. SPIE 2981, 20-28 (1997). http://link.aip.org/link/?PSI/2981/20/1.
    [CrossRef]
  7. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). http://ol.osa.org/abstract.cfm?URI=ol-22-5-340.
    [CrossRef]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). http://www.sciencedirect.com/science/article/B6TVF-3XWS0W5-99/1/12de34cbceb5a231688bc12b28aeef5e.
    [CrossRef]
  9. G. Häusler and M. W. Lindner, "Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett.  28, 2067-2069 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067.
    [CrossRef]
  11. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
    [CrossRef]
  12. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
    [CrossRef]
  13. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of humanretina and choroid," Opt. Express 14, 4403-4411 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
    [CrossRef]
  14. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-5937.
    [CrossRef]
  15. H. Lim,M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-26-12902.
    [CrossRef]
  16. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett.  32, 361-363 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-4-361.
    [CrossRef]
  17. D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "Invivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. pp.iovs07-1553 (2008). http://www.iovs.org/cgi/content/abstract/iovs.07-1553v1.
  18. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett.  32, 2049-2051 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-14-2049.
    [CrossRef]
  19. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. pp. iovs.08-2127 (2008). http://www.iovs.org/cgi/content/abstract/iovs.08-2127v1.
  20. S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14, 11575-11584 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-24-11575.
    [CrossRef]
  21. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s," Opt. Lett.  33, 1318-1320 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-12-1318.
    [CrossRef]
  22. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
    [CrossRef]
  23. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121.
    [CrossRef]
  24. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://link.aip.org/link/?JBO/7/457/1.
    [CrossRef]
  25. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-25-3490.
    [CrossRef]
  26. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-11-2435.
    [CrossRef]
  27. R. Leitgeb,W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-10-2156.
    [CrossRef]
  28. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-11-2404.
    [CrossRef]
  29. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12,367-376 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-3-367.
    [CrossRef]
  30. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-2-444.
    [CrossRef]
  31. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4380.
    [CrossRef]
  32. V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Characterization of Outer Retinal Morphology with High-Speed, Ultrahigh-Resolution Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci.  49, 1571-1579 (2008). http://www.iovs.org/cgi/content/abstract/49/4/1571.
    [CrossRef]
  33. H. Helmers and M. Schellenberg, "CMOS vs. CCD sensors in speckle interferometry," Opt. Laser Technol.  35, 587-595 (2003). http://www.sciencedirect.com/science/article/ B6V4H-48NX786-1/1/7651a31436c9f412c49f2a24ebbf78b1.
    [CrossRef]
  34. W. J. Donnelly III and A. Roorda, "Optimal pupil size in the human eye for axial resolution," J. Opt. Soc. Am. A 20, 2010-2015 (2003). http://josaa.osa.org/abstract.cfm?URI=josaa-20-11-2010.
    [CrossRef]
  35. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett.  27, 406-408 (2002). http://ol.osa.org/abstract.cfm?URI=ol-27-6-406.
    [CrossRef]
  36. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun.  246, 569-578 (2005). http://www.sciencedirect.com/science/article/B6TVF-4DV19JB-4/2/61c22c1efb8e9edce60626561d2b092e.
    [CrossRef]
  37. Z. Hu, Y. Pan, and A. M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt.  46, 8499-8505 (2007). http://ao.osa.org/abstract.cfm?URI=ao-46-35-8499.
    [CrossRef]
  38. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express 16, 4163-4176 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-6-4163.
    [CrossRef]
  39. American National Standards Institute, "American National Standard for Safe Use of Lasers, ANSI Z136.1," (2000).
  40. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15,16922-16932 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16922.
    [CrossRef]
  41. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, "Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging," Proc. SPIE 6426, 642607 1-11 (2007). http://link.aip.org/link/?PSI/6426/642607/1.
  42. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol.  292, 497-523 (1990). http://www3.interscience.wiley.com/journal/109690971/abstract.
    [CrossRef] [PubMed]
  43. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromaticaberration correction," Opt. Express 16, 8126-8143 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-8126.
    [CrossRef]
  44. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transverse scanning optical coherence tomography," Opt. Lett.  31, 1821-1823 (2006). http://ol.osa.org/abstract.cfm?URI=ol-31-12-1821.
    [CrossRef]
  45. A. Roorda, F. Romero-Borja, I. William Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-405.
  46. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007). http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1313.
    [CrossRef]
  47. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-487.
    [CrossRef]
  48. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, "Retinally stabilized cone-targeted stimulus delivery," Opt. Express 15, 13731-13744 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-21-13731.
    [CrossRef]
  49. R. J. Zawadzki, S. S. Choi, S.M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography:optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007). http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373.
    [CrossRef]
  50. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, and M. Belkin, "Special report: Noninvasive multi-parameter functional optical imaging of the eye," Ophthalmic Surg. Lasers Imaging 36, 57-66 (2005). http://www.osli.com/showAbst.asp?thing=9698.
  51. J. A. Martin and A. Roorda, "Direct and Noninvasive Assessment of Parafoveal Capillary Leukocyte Velocity," Ophthalmology 112, 2219-2224 (2005). http://www.sciencedirect.com/science/article/B6VT2-4HDX6HD-1/2/b9dbebaa472a5260de82971409d9a373.
    [CrossRef] [PubMed]
  52. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31, 2308-2310 (2006). http://ol.osa.org/abstract.cfm?URI=ol-31-15-2308.
    [CrossRef]

1998 (1)

G. Häusler and M. W. Lindner, "Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1997 (1)

1993 (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

C. K. Hitzenberger, "Optical measurement of the axial eye length by laser Doppler interferometry." Invest. Ophthalmol. Vis. Sci. 32, 616-624 (1991).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Chinn, S. R.

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Fujimoto, J. G.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). http://ol.osa.org/abstract.cfm?URI=ol-22-5-340.
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, "Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).

C. K. Hitzenberger, "Optical measurement of the axial eye length by laser Doppler interferometry." Invest. Ophthalmol. Vis. Sci. 32, 616-624 (1991).
[PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Lindner, M. W.

G. Häusler and M. W. Lindner, "Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). http://ol.osa.org/abstract.cfm?URI=ol-22-5-340.
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Am. J. Ophthalmol. (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 1, 113-114 (1993).

Invest. Ophthalmol. Vis. Sci. (1)

C. K. Hitzenberger, "Optical measurement of the axial eye length by laser Doppler interferometry." Invest. Ophthalmol. Vis. Sci. 32, 616-624 (1991).
[PubMed]

J. Biomed. Opt. (1)

G. Häusler and M. W. Lindner, "Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Opt. Lett. (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991). http://www.sciencemag.org/cgi/content/abstract/254/5035/1178.
[CrossRef]

Other (47)

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Inc., New Jersey, USA, 2004).

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett.  18, 1864-1866 (1993). http://ol.osa.org/abstract.cfm?URI=ol-18-21-1864.
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). http://www.sciencedirect.com/science/article/B6TVF-3XWS0W5-99/1/12de34cbceb5a231688bc12b28aeef5e.
[CrossRef]

U. Haberland, P. Jansen, V. Blazek, and H. J. Schmitt, "Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser," Proc. SPIE 2981, 20-28 (1997). http://link.aip.org/link/?PSI/2981/20/1.
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett.  28, 2067-2069 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067.
[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
[CrossRef]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of humanretina and choroid," Opt. Express 14, 4403-4411 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
[CrossRef]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-5937.
[CrossRef]

H. Lim,M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-26-12902.
[CrossRef]

V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett.  32, 361-363 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-4-361.
[CrossRef]

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "Invivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. pp.iovs07-1553 (2008). http://www.iovs.org/cgi/content/abstract/iovs.07-1553v1.

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett.  32, 2049-2051 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-14-2049.
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. pp. iovs.08-2127 (2008). http://www.iovs.org/cgi/content/abstract/iovs.08-2127v1.

S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14, 11575-11584 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-24-11575.
[CrossRef]

D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s," Opt. Lett.  33, 1318-1320 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-12-1318.
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121.
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://link.aip.org/link/?JBO/7/457/1.
[CrossRef]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003). http://www.opticsexpress.org/abstract.cfm?URI=oe-11-25-3490.
[CrossRef]

B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-11-2435.
[CrossRef]

R. Leitgeb,W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-10-2156.
[CrossRef]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-11-2404.
[CrossRef]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12,367-376 (2004). http://www.opticsexpress.org/abstract.cfm?URI=oe-12-3-367.
[CrossRef]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-2-444.
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef]

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Characterization of Outer Retinal Morphology with High-Speed, Ultrahigh-Resolution Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci.  49, 1571-1579 (2008). http://www.iovs.org/cgi/content/abstract/49/4/1571.
[CrossRef]

H. Helmers and M. Schellenberg, "CMOS vs. CCD sensors in speckle interferometry," Opt. Laser Technol.  35, 587-595 (2003). http://www.sciencedirect.com/science/article/ B6V4H-48NX786-1/1/7651a31436c9f412c49f2a24ebbf78b1.
[CrossRef]

W. J. Donnelly III and A. Roorda, "Optimal pupil size in the human eye for axial resolution," J. Opt. Soc. Am. A 20, 2010-2015 (2003). http://josaa.osa.org/abstract.cfm?URI=josaa-20-11-2010.
[CrossRef]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett.  27, 406-408 (2002). http://ol.osa.org/abstract.cfm?URI=ol-27-6-406.
[CrossRef]

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun.  246, 569-578 (2005). http://www.sciencedirect.com/science/article/B6TVF-4DV19JB-4/2/61c22c1efb8e9edce60626561d2b092e.
[CrossRef]

Z. Hu, Y. Pan, and A. M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt.  46, 8499-8505 (2007). http://ao.osa.org/abstract.cfm?URI=ao-46-35-8499.
[CrossRef]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express 16, 4163-4176 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-6-4163.
[CrossRef]

American National Standards Institute, "American National Standard for Safe Use of Lasers, ANSI Z136.1," (2000).

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15,16922-16932 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16922.
[CrossRef]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, "Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging," Proc. SPIE 6426, 642607 1-11 (2007). http://link.aip.org/link/?PSI/6426/642607/1.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol.  292, 497-523 (1990). http://www3.interscience.wiley.com/journal/109690971/abstract.
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromaticaberration correction," Opt. Express 16, 8126-8143 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transverse scanning optical coherence tomography," Opt. Lett.  31, 1821-1823 (2006). http://ol.osa.org/abstract.cfm?URI=ol-31-12-1821.
[CrossRef]

A. Roorda, F. Romero-Borja, I. William Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-405.

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007). http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1313.
[CrossRef]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-487.
[CrossRef]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, "Retinally stabilized cone-targeted stimulus delivery," Opt. Express 15, 13731-13744 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-21-13731.
[CrossRef]

R. J. Zawadzki, S. S. Choi, S.M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography:optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007). http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373.
[CrossRef]

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, and M. Belkin, "Special report: Noninvasive multi-parameter functional optical imaging of the eye," Ophthalmic Surg. Lasers Imaging 36, 57-66 (2005). http://www.osli.com/showAbst.asp?thing=9698.

J. A. Martin and A. Roorda, "Direct and Noninvasive Assessment of Parafoveal Capillary Leukocyte Velocity," Ophthalmology 112, 2219-2224 (2005). http://www.sciencedirect.com/science/article/B6VT2-4HDX6HD-1/2/b9dbebaa472a5260de82971409d9a373.
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31, 2308-2310 (2006). http://ol.osa.org/abstract.cfm?URI=ol-31-15-2308.
[CrossRef]

Supplementary Material (3)

» Media 1: AVI (3967 KB)     
» Media 2: AVI (2335 KB)     
» Media 3: AVI (2433 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

OCT ophthalmic imaging apparatus.

Fig. 2.
Fig. 2.

(a) Spectrum as measured by the CMOS camera for each configuration. (b) Axial point spread function before spectral shaping. (c) Axial point spread function after spectral shaping of design configurations A and B. Spectrums and point spread functions are all normalized to 1.

Fig. 3.
Fig. 3.

(a) Sensitivity roll-off vs. imaging depth. (b) Axial resolution vs. imaging depth.

Fig. 4.
Fig. 4.

OCT cross sectional images of the fovea with 500 axial scans per B-scan and 2000 axial scans per B-scan for each configuration. All scale bars represent 100 µm.

Fig. 5.
Fig. 5.

OCT cross sectional images of the optic disk with 500 axial scans per B-scan and 2000 axial scans per B-scan for each configuration. All scale bars represent 100 µm.

Fig. 6.
Fig. 6.

Dense 3D volumetric data sets acquired at 250,000 axial scans per second. Select cross sectional images of (a) the fovea and (b) optic disk volumes. OCT fundus images of (c) fovea 3D data set and (d) optic disk 3D data set. All scale bars represent 500 µm.

Fig. 7.
Fig. 7.

Motion corrected volumetric acquisition.

Fig. 8.
Fig. 8.

Rapid repeated volumetric imaging of cone photoreceptors (Media 1).

Fig. 9.
Fig. 9.

Ocular motion extracted from repeated volume imaging of cones: (a) x, y, and z motion vs. sequence number (time) and (b) spatial motion trajectory plotted in 3D space.

Fig. 10.
Fig. 10.

Imaging of capillary blood flow. (a) and (b) Cross sectional image and associated Gaussian window for regions 1 and 2. (c) and (d) Transverse images of regions 1 and 2. The additional temporal information obtained with the rapid sequential volumetric imaging aids in identifying the capillary network (Region 1: Media 2. Region 2: Media 3.).

Tables (1)

Tables Icon

Table 1. System Design Configurations and Performance Measures

Metrics