Abstract

Angular Domain Imaging (ADI) employs micromachined angular filter to detect non-scattered photons that pass through the micro-scale tunnels unattenuated while scattered photons are rejected. This paper describes the construction of an ADI system utilizing diode lasers at three different wavelengths in the range of the red and near infrared spectrum. Experiments are performed to verify the feasibility of ADI at multi-wavelengths. ADI results of chicken breast as a biological scattering medium are presented for different thicknesses. A spatial resolution of <0.5 mm is achieved with 5 mm thick chicken breast using a 975 nm diode laser source.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
    [CrossRef] [PubMed]
  2. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
    [CrossRef]
  3. D. A. Benaron and D. K. Stevenson, "Optical time-of-flight and absorbance imaging of biologic media," Science 259, 1463-1466 (1993).
    [CrossRef] [PubMed]
  4. N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
    [CrossRef]
  5. G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
    [CrossRef]
  6. S. Chandrasekhar, Radiative Transfer, (Oxford University Press, London, 1950). Ishimaru, Wave Propagation and Scattering in Random Media: Single Scattering and Transport Theory, (Academic Press, NY, 1978).
  7. M. R. Arnfield, J. Tulip, and M. S. McPhee, "Optical propagation in tissue with anisotropic scattering," IEEE Trans. Biomed. Eng. 35, 372-381 (1988).
    [CrossRef] [PubMed]
  8. W. F. Cheong, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  9. H. L. and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J 93, 70 (1940).
  10. S. L. Jacques, C. A. Alter, S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).
  11. T. Vo-Dinh, ed., Biomedical Photonics Handbook (Publisher, CRC, 2003).
    [CrossRef]
  12. H. C. van de Hulst, Multiple Light Scattering, (New York, Academic, 1980) Vol. 2.
  13. L. Wang, S. L. Jacques and L. Zheng, "MCML???Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
    [CrossRef] [PubMed]
  14. G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
    [CrossRef] [PubMed]
  15. A. O. Wist, P.P. Fatouros and S. L. Herr, "Increased spatial resolution in transillumination using collimated light," IEEE Trans. Med. Imaging 12, 751-7 (1993).
    [CrossRef] [PubMed]
  16. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, "Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium," Opt. Lett. 20, 1498-1500 (1995).
    [CrossRef] [PubMed]
  17. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166???2185 (1990).
    [CrossRef]
  18. K. Shimizu and M. Kitama, "Fundamental study on near-axis scattered light and its application to optical computed tomography," Opt. Rev. 7, 383 (2000).
    [CrossRef]
  19. G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
    [CrossRef]
  20. M. S. Tank and G. H. Chapman, "Micromachined silicon collimating detector array to view objects in a highly scattering medium," Canadian J. of Elec. Comp. Eng. 25, 13-18 (2000).
  21. G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, "Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination," Proc. SPIE 6084, 331-342 (2006).
    [CrossRef]
  22. F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, "Deep illumination angular domain imaging within highly scattering media enhanced by image processing," Proc. SPIE 6380, 63800Q (2006).
    [CrossRef]
  23. P. K. Chan, F. Vasefi, G. H. Chapman, B. Kaminska, N. Pfeiffer, "Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode," Proc. SPIE 6435, (2007).
  24. F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
    [CrossRef]
  25. L. Wang, P. P. Ho, and R. R. Alfano, "Time-resolved Fourier spectrum and imaging in highly scattering media," Appl. Opt. 32, 5043 (1993)
    [CrossRef] [PubMed]
  26. F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, N. Pfeiffer, "Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source," Proc. SPIE Vol. 6854, 68541E (2008).
    [CrossRef]
  27. G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).
  28. G. Marquez, L. V. Wang, Shao-Pow Lin, J. A. Schwartz and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
    [CrossRef]
  29. G. Ku, X. Wang, X. Xie, G. Stoica and L. V. Wang, "Deep penetrating photoacoustic tomography in biological tissues," in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117-26 (2005).

2008 (1)

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
[CrossRef]

2007 (1)

F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

2005 (1)

A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
[CrossRef] [PubMed]

2003 (2)

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
[CrossRef]

2000 (2)

M. S. Tank and G. H. Chapman, "Micromachined silicon collimating detector array to view objects in a highly scattering medium," Canadian J. of Elec. Comp. Eng. 25, 13-18 (2000).

K. Shimizu and M. Kitama, "Fundamental study on near-axis scattered light and its application to optical computed tomography," Opt. Rev. 7, 383 (2000).
[CrossRef]

1999 (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

1998 (1)

1997 (1)

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

1995 (2)

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, "Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium," Opt. Lett. 20, 1498-1500 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques and L. Zheng, "MCML???Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
[CrossRef] [PubMed]

1993 (2)

D. A. Benaron and D. K. Stevenson, "Optical time-of-flight and absorbance imaging of biologic media," Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

A. O. Wist, P.P. Fatouros and S. L. Herr, "Increased spatial resolution in transillumination using collimated light," IEEE Trans. Med. Imaging 12, 751-7 (1993).
[CrossRef] [PubMed]

1990 (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166???2185 (1990).
[CrossRef]

W. F. Cheong, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1988 (1)

M. R. Arnfield, J. Tulip, and M. S. McPhee, "Optical propagation in tissue with anisotropic scattering," IEEE Trans. Biomed. Eng. 35, 372-381 (1988).
[CrossRef] [PubMed]

1987 (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

1984 (1)

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

1940 (1)

H. L. and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J 93, 70 (1940).

Alfano, R. R.

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Arnfield, M. R.

M. R. Arnfield, J. Tulip, and M. S. McPhee, "Optical propagation in tissue with anisotropic scattering," IEEE Trans. Biomed. Eng. 35, 372-381 (1988).
[CrossRef] [PubMed]

Benaron, D. A.

D. A. Benaron and D. K. Stevenson, "Optical time-of-flight and absorbance imaging of biologic media," Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

Bui, M. H.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

Chan, P.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
[CrossRef]

Chan, P. K. Y.

F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

Chapman, G. H.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
[CrossRef]

M. S. Tank and G. H. Chapman, "Micromachined silicon collimating detector array to view objects in a highly scattering medium," Canadian J. of Elec. Comp. Eng. 25, 13-18 (2000).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166???2185 (1990).
[CrossRef]

W. F. Cheong, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Chu, G.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
[CrossRef]

Debray, S.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Fatouros, P.P.

A. O. Wist, P.P. Fatouros and S. L. Herr, "Increased spatial resolution in transillumination using collimated light," IEEE Trans. Med. Imaging 12, 751-7 (1993).
[CrossRef] [PubMed]

Fraysse, F.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Ghesquiere, S.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Herr, S. L.

A. O. Wist, P.P. Fatouros and S. L. Herr, "Increased spatial resolution in transillumination using collimated light," IEEE Trans. Med. Imaging 12, 751-7 (1993).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
[CrossRef] [PubMed]

Ho, P. P.

Jacques, S. L.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

L. Wang, S. L. Jacques and L. Zheng, "MCML???Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Jarry, G.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

Kaminska, B.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

Kitama, M.

K. Shimizu and M. Kitama, "Fundamental study on near-axis scattered light and its application to optical computed tomography," Opt. Rev. 7, 383 (2000).
[CrossRef]

Laurent, D.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

Lee, D.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
[CrossRef]

Liang, X.

Lin, S.-P.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

Maarek, J. M.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

Marquez, G.

G. Marquez, L. V. Wang, Shao-Pow Lin, J. A. Schwartz and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
[CrossRef]

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

McPhee, M. S.

M. R. Arnfield, J. Tulip, and M. S. McPhee, "Optical propagation in tissue with anisotropic scattering," IEEE Trans. Biomed. Eng. 35, 372-381 (1988).
[CrossRef] [PubMed]

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Pfeiffer, N.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166???2185 (1990).
[CrossRef]

S. L. Jacques, C. A. Alter, S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Schwartz, J.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

Shao-Pow Lin, L. V.

Shimizu, K.

K. Shimizu and M. Kitama, "Fundamental study on near-axis scattered light and its application to optical computed tomography," Opt. Rev. 7, 383 (2000).
[CrossRef]

Stevenson, D. K.

D. A. Benaron and D. K. Stevenson, "Optical time-of-flight and absorbance imaging of biologic media," Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

Tank, M. S.

M. S. Tank and G. H. Chapman, "Micromachined silicon collimating detector array to view objects in a highly scattering medium," Canadian J. of Elec. Comp. Eng. 25, 13-18 (2000).

Thomsen, S. L.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

Tittel, F. K.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

Trinh, M.

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
[CrossRef]

Tulip, J.

M. R. Arnfield, J. Tulip, and M. S. McPhee, "Optical propagation in tissue with anisotropic scattering," IEEE Trans. Biomed. Eng. 35, 372-381 (1988).
[CrossRef] [PubMed]

Vasefi, F.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

Wang, B. S. L.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

Wang, L.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, "Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium," Opt. Lett. 20, 1498-1500 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques and L. Zheng, "MCML???Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
[CrossRef] [PubMed]

Wang, L. V.

Wang, Q. Z.

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166???2185 (1990).
[CrossRef]

Wist, A. O.

A. O. Wist, P.P. Fatouros and S. L. Herr, "Increased spatial resolution in transillumination using collimated light," IEEE Trans. Med. Imaging 12, 751-7 (1993).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques and L. Zheng, "MCML???Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Astrophys. J (1)

H. L. and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J 93, 70 (1940).

Canadian J. of Elec. Comp. Eng. (1)

M. S. Tank and G. H. Chapman, "Micromachined silicon collimating detector array to view objects in a highly scattering medium," Canadian J. of Elec. Comp. Eng. 25, 13-18 (2000).

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques and L. Zheng, "MCML???Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146, (1995).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166???2185 (1990).
[CrossRef]

W. F. Cheong, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Vasefi, P K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, "An Optical Imaging Technique using Deep Illumination in the Angular Domain," IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu and D. Lee, "Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays," IEEE J. Sel. Top. Quantum Electron. 9, 257-66 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. R. Arnfield, J. Tulip, and M. S. McPhee, "Optical propagation in tissue with anisotropic scattering," IEEE Trans. Biomed. Eng. 35, 372-381 (1988).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. O. Wist, P.P. Fatouros and S. L. Herr, "Increased spatial resolution in transillumination using collimated light," IEEE Trans. Med. Imaging 12, 751-7 (1993).
[CrossRef] [PubMed]

Imaging, Tracking Technologies II (1)

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry," in Biomedical Sensing, Imaging, and Tracking Technologies II, 2976, 306-317 (1997).

J. Biomed. Eng. (1)

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui and D. Laurent, "Imaging mammalian tissues and organs using laser collimated transillumination," J. Biomed. Eng. 6, 70-4 (1984).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, " Optical Properties of Circulating Human Blood in the Wavelength Range 400--2500 nm," J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Laser Life Sci. (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Opt. Lett. (1)

Opt. Rev. (1)

K. Shimizu and M. Kitama, "Fundamental study on near-axis scattered light and its application to optical computed tomography," Opt. Rev. 7, 383 (2000).
[CrossRef]

Proc. SPIE (2)

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer and G. Chu, "Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays," Proc. SPIE 4955, 462 (2003).
[CrossRef]

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, "Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter," Proc. SPIE 6854, 68541D (2008).
[CrossRef]

Science (1)

D. A. Benaron and D. K. Stevenson, "Optical time-of-flight and absorbance imaging of biologic media," Science 259, 1463-1466 (1993).
[CrossRef] [PubMed]

Other (9)

S. Chandrasekhar, Radiative Transfer, (Oxford University Press, London, 1950). Ishimaru, Wave Propagation and Scattering in Random Media: Single Scattering and Transport Theory, (Academic Press, NY, 1978).

T. Vo-Dinh, ed., Biomedical Photonics Handbook (Publisher, CRC, 2003).
[CrossRef]

H. C. van de Hulst, Multiple Light Scattering, (New York, Academic, 1980) Vol. 2.

L. Wang, P. P. Ho, and R. R. Alfano, "Time-resolved Fourier spectrum and imaging in highly scattering media," Appl. Opt. 32, 5043 (1993)
[CrossRef] [PubMed]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, N. Pfeiffer, "Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source," Proc. SPIE Vol. 6854, 68541E (2008).
[CrossRef]

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, "Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination," Proc. SPIE 6084, 331-342 (2006).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, "Deep illumination angular domain imaging within highly scattering media enhanced by image processing," Proc. SPIE 6380, 63800Q (2006).
[CrossRef]

P. K. Chan, F. Vasefi, G. H. Chapman, B. Kaminska, N. Pfeiffer, "Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode," Proc. SPIE 6435, (2007).

G. Ku, X. Wang, X. Xie, G. Stoica and L. V. Wang, "Deep penetrating photoacoustic tomography in biological tissues," in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117-26 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic ADI experiment setup in transillumination mode.

Fig. 2.
Fig. 2.

Angular filter array.

Fig. 3.
Fig. 3.

Resolution target to measure the spatial resolution of ADI.

Fig. 4.
Fig. 4.

Image of small resolution targets placed in a 2 cm optical cell filled with homogenous scattering milk/water solution using an 808 nm laser diode at (a) SR ≈ 103:1 [µ’s=1 cm-1, µ’a=0.01cm-1]and (b) SR ≈ 107:1 [µ’s=2.5 cm-1, µ’a=0.01cm-1]. (Total scan area is 6.6 mm by 6.5 mm)

Fig. 5.
Fig. 5.

ADI setup with diode laser and a collimation system.

Fig. 6.
Fig. 6.

Collimated transmission measurement results; Scattering ratio versus concentration of 2% fat partly skimmed milk (in percentage) diluted by water in 1 cm container.

Fig. 7.
Fig. 7.

Chicken breast scattering ratio measurement results with vertical log scale.

Fig. 8.
Fig. 8.

Resolution targets placed in diluted milk sample with SR ~106:1 scattering media [µ’s=0.8 cm-1, µ’a=0.01cm-1]: at 2.5 cm depth in a 5 cm optical path cuvette with the (a) 670 nm, (b) 808 nm, or (c) 975 nm diode laser system; and at 5 cm depth with the (d) 670 nm, (e) 808 nm, or (f) 975 nm diode laser system. (All images are histogram equalized and gamma curve corrected)

Fig. 9.
Fig. 9.

Large resolution target slide in front of 2.2 ± 0.2 mm chicken breast with the (a) 670 nm, (b) 808 nm, or (c) 975 nm diode laser system. (Total scan area is approximately 7.8 mm×8.8 mm; white scale bar is 500 µm).

Fig. 10.
Fig. 10.

Large resolution targets in front of a chicken breast sample of 4 mm thickness with the (a) 670 nm, (b) 808 nm, or (c) 975 nm diode laser system, and for 5 mm thick chicken breast with the (d) 670 nm, (e) 808 nm, or (f) 975 nm diode laser system. (Total scan area is approximately 7.8 mm×8.8 mm; white scale bar is 500 µm)

Fig. 11.
Fig. 11.

Large resolution targets in front of 3 mm chicken breast (a) without digital image processing, and (b) after digital image processing. (Total scan area is approximately 7.8 mm×8.8 mm)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ω · I ( x , Ω ) = ( μ a + μ s ) I ( x , Ω ) + μ s 4 π I ( x , Ω ) S ( Ω Ω ) d Ω + S ( x , Ω ) .
g = cos θ = 2 π 0 π S ( Ω Ω ) cos θ sin θ d θ
S ( Ω Ω ) = 1 4 π 1 g 2 ( 1 + g 2 2 g cos θ ) 3 / 2
μ s = μ s ( 1 g )
I ( d ) = I o exp [ - ( μ s + μ a ) d ] ,
S R = proportion   of fully scattered photons pro portion of ballistic + quasi ballistic photons ,

Metrics