Abstract

Angular Domain Imaging (ADI) employs micromachined angular filter to detect non-scattered photons that pass through the micro-scale tunnels unattenuated while scattered photons are rejected. This paper describes the construction of an ADI system utilizing diode lasers at three different wavelengths in the range of the red and near infrared spectrum. Experiments are performed to verify the feasibility of ADI at multi-wavelengths. ADI results of chicken breast as a biological scattering medium are presented for different thicknesses. A spatial resolution of <0.5 mm is achieved with 5 mm thick chicken breast using a 975 nm diode laser source.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).
    [CrossRef] [PubMed]
  2. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
    [CrossRef]
  3. D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  4. N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
    [CrossRef]
  5. G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
    [CrossRef]
  6. S. Chandrasekhar and Ishimaru, Wave Propagation and Scattering in Random Media: Single Scattering and Transport Theory, (Academic Press, NY, 1978).
  7. M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
    [CrossRef] [PubMed]
  8. W. F. Cheong, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  9. H. L. and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J 93, 70 (1940).
  10. S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular Dependence of HeNe laser Light Scattering by Human Dermis,” Laser Life Sci. 1, 309–333 (1987).
  11. T. Vo-Dinh, ed., Biomedical Photonics Handbook (Publisher, CRC, 2003).
    [CrossRef]
  12. H. C. van de Hulst, Multiple Light Scattering, (New York, Academic, 1980) Vol. 2.
  13. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146, (1995).
    [CrossRef] [PubMed]
  14. G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
    [CrossRef] [PubMed]
  15. A. O. Wist, P.P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–7 (1993).
    [CrossRef] [PubMed]
  16. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
    [CrossRef] [PubMed]
  17. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  18. K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383 (2000).
    [CrossRef]
  19. G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
    [CrossRef]
  20. M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in a highly scattering medium,” Canadian J. of Elec. and Comp. Eng. 25, 13–18 (2000).
  21. G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
    [CrossRef]
  22. F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, “Deep illumination angular domain imaging within highly scattering media enhanced by image processing”, Proc. SPIE6380 (2006).
    [CrossRef]
  23. P.K. Chan, F. Vasefi, G.H. Chapman, B. Kaminska, and N. Pfeiffer. Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode, Proc. SPIE6435 (2007).
  24. F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
    [CrossRef]
  25. L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32, 5043- (1993)
    [CrossRef] [PubMed]
  26. F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source”, Proc. SPIEVol. 6854 (2008).
    [CrossRef]
  27. G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).
  28. G. Marquez, L. V. Wang, Shao-Pow Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
    [CrossRef]
  29. G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

2008 (1)

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

2007 (1)

F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
[CrossRef]

2005 (2)

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).
[CrossRef] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

2003 (2)

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
[CrossRef]

2000 (2)

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in a highly scattering medium,” Canadian J. of Elec. and Comp. Eng. 25, 13–18 (2000).

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383 (2000).
[CrossRef]

1999 (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

1998 (1)

1997 (1)

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

1995 (2)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146, (1995).
[CrossRef] [PubMed]

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef] [PubMed]

1993 (3)

A. O. Wist, P.P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–7 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32, 5043- (1993)
[CrossRef] [PubMed]

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

1990 (2)

W. F. Cheong, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1988 (1)

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef] [PubMed]

1987 (1)

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular Dependence of HeNe laser Light Scattering by Human Dermis,” Laser Life Sci. 1, 309–333 (1987).

1984 (1)

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

1940 (1)

H. L. and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J 93, 70 (1940).

Alfano, R. R.

Alter, C. A.

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular Dependence of HeNe laser Light Scattering by Human Dermis,” Laser Life Sci. 1, 309–333 (1987).

Arnfield, M. R.

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef] [PubMed]

Benaron, D. A.

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Bui, M. H.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

Chan, P.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

Chan, P. K. Y.

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, “Deep illumination angular domain imaging within highly scattering media enhanced by image processing”, Proc. SPIE6380 (2006).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source”, Proc. SPIEVol. 6854 (2008).
[CrossRef]

Chan, P.K.

P.K. Chan, F. Vasefi, G.H. Chapman, B. Kaminska, and N. Pfeiffer. Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode, Proc. SPIE6435 (2007).

Chan, P.K.Y.

F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar and Ishimaru, Wave Propagation and Scattering in Random Media: Single Scattering and Transport Theory, (Academic Press, NY, 1978).

Chapman, G. H.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
[CrossRef]

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in a highly scattering medium,” Canadian J. of Elec. and Comp. Eng. 25, 13–18 (2000).

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, “Deep illumination angular domain imaging within highly scattering media enhanced by image processing”, Proc. SPIE6380 (2006).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source”, Proc. SPIEVol. 6854 (2008).
[CrossRef]

Chapman, G.H.

P.K. Chan, F. Vasefi, G.H. Chapman, B. Kaminska, and N. Pfeiffer. Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode, Proc. SPIE6435 (2007).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

W. F. Cheong, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Chu, G.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
[CrossRef]

Debray, S.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Fatouros, P.P.

A. O. Wist, P.P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–7 (1993).
[CrossRef] [PubMed]

Fraysse, F.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Ghesquiere, S.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

Greenstein, J. L.

H. L. and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J 93, 70 (1940).

H. L.,

H. L. and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J 93, 70 (1940).

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Herr, S. L.

A. O. Wist, P.P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–7 (1993).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).
[CrossRef] [PubMed]

Ho, P. P.

Ishimaru,

S. Chandrasekhar and Ishimaru, Wave Propagation and Scattering in Random Media: Single Scattering and Transport Theory, (Academic Press, NY, 1978).

Jacques, S. L.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146, (1995).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular Dependence of HeNe laser Light Scattering by Human Dermis,” Laser Life Sci. 1, 309–333 (1987).

Jarry, G.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

Kaminska, B.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
[CrossRef]

P.K. Chan, F. Vasefi, G.H. Chapman, B. Kaminska, and N. Pfeiffer. Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode, Proc. SPIE6435 (2007).

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source”, Proc. SPIEVol. 6854 (2008).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, “Deep illumination angular domain imaging within highly scattering media enhanced by image processing”, Proc. SPIE6380 (2006).
[CrossRef]

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

Kitama, M.

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383 (2000).
[CrossRef]

Ku, G.

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

Laurent, D.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

Lee, D.

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
[CrossRef]

Liang, X.

Lin, S.-P.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

Lin, Shao-Pow

Liu, T.

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

Maarek, J. M.

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

Marquez, G.

G. Marquez, L. V. Wang, Shao-Pow Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
[CrossRef]

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

McPhee, M. S.

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef] [PubMed]

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Pfeiffer, N.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
[CrossRef]

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source”, Proc. SPIEVol. 6854 (2008).
[CrossRef]

P.K. Chan, F. Vasefi, G.H. Chapman, B. Kaminska, and N. Pfeiffer. Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode, Proc. SPIE6435 (2007).

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular Dependence of HeNe laser Light Scattering by Human Dermis,” Laser Life Sci. 1, 309–333 (1987).

Rao, J.

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Schwartz, J.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

Schwartz, J. A.

Shimizu, K.

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383 (2000).
[CrossRef]

Stevenson, D. K.

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Stoica, G.

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

Tank, M. S.

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in a highly scattering medium,” Canadian J. of Elec. and Comp. Eng. 25, 13–18 (2000).

Thomsen, S. L.

G. Marquez, L. V. Wang, Shao-Pow Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
[CrossRef]

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

Tittel, F. K.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

Trinh, M.

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
[CrossRef]

Tulip, J.

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering, (New York, Academic, 1980) Vol. 2.

Vasefi, F.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
[CrossRef]

P.K. Chan, F. Vasefi, G.H. Chapman, B. Kaminska, and N. Pfeiffer. Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode, Proc. SPIE6435 (2007).

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source”, Proc. SPIEVol. 6854 (2008).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, “Deep illumination angular domain imaging within highly scattering media enhanced by image processing”, Proc. SPIE6380 (2006).
[CrossRef]

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

Wang, B. S. L.

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

Wang, L.

Wang, L. V.

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

G. Marquez, L. V. Wang, Shao-Pow Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
[CrossRef]

Wang, Q. Z.

Wang, X.

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wist, A. O.

A. O. Wist, P.P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–7 (1993).
[CrossRef] [PubMed]

Xie, X.

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146, (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Astrophys. J (1)

H. L. and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J 93, 70 (1940).

Canadian J. of Elec. and Comp. Eng. (1)

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in a highly scattering medium,” Canadian J. of Elec. and Comp. Eng. 25, 13–18 (2000).

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146, (1995).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

W. F. Cheong, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Vasefi, P.K.Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An Optical Imaging Technique Using Deep Illumination in the Angular Domain,” IEEE J. Sel. Top. Quantum Electron. 13, pp. 1610–1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257–66 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. O. Wist, P.P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–7 (1993).
[CrossRef] [PubMed]

in Biomedical Sensing, Imaging, and Tracking Technologies II (1)

G. Marquez, B. S. L. Wang, S.-P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen, and J. Schwartz, “Measurement of absorption and scattering spectra of chicken breast with oblique incidence reflectometry,” in Biomedical Sensing, Imaging, and Tracking Technologies II,  Vol. 2976, 306–317 (1997).

in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics (1)

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Deep penetrating photoacoustic tomography in biological tissues,” in Photons Plus Ultrasound: Imaging and Sensing x: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, pp. 117–26 (2005).

J. Biomed. Eng. (1)

G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, M. H. Bui, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng. 6, 70–4 (1984).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “ Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm,” J. Biomed. Opt. 4, 36 (1999).
[CrossRef]

Laser Life Sci. (1)

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular Dependence of HeNe laser Light Scattering by Human Dermis,” Laser Life Sci. 1, 309–333 (1987).

Opt. Lett. (1)

Opt. Rev. (1)

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383 (2000).
[CrossRef]

Proc. SPIE (2)

G. H. Chapman, M. Trinh, D. Lee, N. Pfeiffer, and G. Chu, “Angular domain optical imaging of structures within highly scattering material using silicon micromachined collimating arrays,” Proc. SPIE 4955, 462 (2003).
[CrossRef]

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

Science (1)

D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Other (7)

S. Chandrasekhar and Ishimaru, Wave Propagation and Scattering in Random Media: Single Scattering and Transport Theory, (Academic Press, NY, 1978).

T. Vo-Dinh, ed., Biomedical Photonics Handbook (Publisher, CRC, 2003).
[CrossRef]

H. C. van de Hulst, Multiple Light Scattering, (New York, Academic, 1980) Vol. 2.

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source”, Proc. SPIEVol. 6854 (2008).
[CrossRef]

G. H. Chapman, J. Rao, T. Liu, P. K. Y. Chan, F. Vasefi, B. Kaminska, and N. Pfeiffer, “Enhanced Angular Domain Imaging in Turbid Media using Gaussian Line Illumination,” Proc. SPIE6084, (2006).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, and G. H. Chapman, “Deep illumination angular domain imaging within highly scattering media enhanced by image processing”, Proc. SPIE6380 (2006).
[CrossRef]

P.K. Chan, F. Vasefi, G.H. Chapman, B. Kaminska, and N. Pfeiffer. Angular Domain Optical Tomography in Scattering Media with Multi-spectral Diode, Proc. SPIE6435 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic ADI experiment setup in transillumination mode.

Fig. 2.
Fig. 2.

Angular filter array.

Fig. 3.
Fig. 3.

Resolution target to measure the spatial resolution of ADI.

Fig. 4.
Fig. 4.

Image of small resolution targets placed in a 2 cm optical cell filled with homogenous scattering milk/water solution using an 808 nm laser diode at (a) SR ≈ 103:1 [µ’s=1 cm-1, µ’a=0.01cm-1]and (b) SR ≈ 107:1 [µ’s=2.5 cm-1, µ’a=0.01cm-1]. (Total scan area is 6.6 mm by 6.5 mm)

Fig. 5.
Fig. 5.

ADI setup with diode laser and a collimation system.

Fig. 6.
Fig. 6.

Collimated transmission measurement results; Scattering ratio versus concentration of 2% fat partly skimmed milk (in percentage) diluted by water in 1 cm container.

Fig. 7.
Fig. 7.

Chicken breast scattering ratio measurement results with vertical log scale.

Fig. 8.
Fig. 8.

Resolution targets placed in diluted milk sample with SR ~106:1 scattering media [µ’s=0.8 cm-1, µ’a=0.01cm-1]: at 2.5 cm depth in a 5 cm optical path cuvette with the (a) 670 nm, (b) 808 nm, or (c) 975 nm diode laser system; and at 5 cm depth with the (d) 670 nm, (e) 808 nm, or (f) 975 nm diode laser system. (All images are histogram equalized and gamma curve corrected)

Fig. 9.
Fig. 9.

Large resolution target slide in front of 2.2 ± 0.2 mm chicken breast with the (a) 670 nm, (b) 808 nm, or (c) 975 nm diode laser system. (Total scan area is approximately 7.8 mm×8.8 mm; white scale bar is 500 µm).

Fig. 10.
Fig. 10.

Large resolution targets in front of a chicken breast sample of 4 mm thickness with the (a) 670 nm, (b) 808 nm, or (c) 975 nm diode laser system, and for 5 mm thick chicken breast with the (d) 670 nm, (e) 808 nm, or (f) 975 nm diode laser system. (Total scan area is approximately 7.8 mm×8.8 mm; white scale bar is 500 µm)

Fig. 11.
Fig. 11.

Large resolution targets in front of 3 mm chicken breast (a) without digital image processing, and (b) after digital image processing. (Total scan area is approximately 7.8 mm×8.8 mm)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ω · I ( x , Ω ) = ( μ a + μ s ) I ( x , Ω ) + μ s 4 π I ( x , Ω ) S ( Ω Ω ) d Ω + S ( x , Ω ) .
g = cos θ = 2 π 0 π S ( Ω Ω ) cos θ sin θ d θ
S ( Ω Ω ) = 1 4 π 1 g 2 ( 1 + g 2 2 g cos θ ) 3 / 2
μ s = μ s ( 1 g )
I ( d ) = I o exp [ - ( μ s + μ a ) d ] ,
S R = proportion   of fully scattered photons pro portion of ballistic + quasi ballistic photons ,

Metrics