Abstract

An optical manipulation system that employs both optical and temperature gradients to simultaneously enable trapping, manipulating and imaging of live cells with a low magnification, low numerical aperture objective lens (10×/0.4 N.A.) is reported. This approach negates the requirement for a high N.A. lens used in traditional optical trapping. Our system comprised a dual scanning system and two independent lasers which provided the ability to move the trapping spot independently of the confocal imaging process in close to real-time and without pre-programming. To demonstrate the efficacy of this innovative method, trapping and manipulation of live T cells was simultaneously performed over a field of view exceeding 1 mm2 for extended periods without compromising cell viability.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  2. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348,348-352 (1990).
    [CrossRef] [PubMed]
  3. M. Gu, P. C. Ke and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68,3666-3668 (1997).
    [CrossRef]
  4. W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric study of the forces on microspheres held by optical tweezers," Appl. Opt. 33,1735-1748 (1994).
    [CrossRef] [PubMed]
  5. J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed., (Plenum Press, New York, 1995).
  6. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed., (Cambridge University Press, Cambridge, 1997).
  7. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
    [CrossRef] [PubMed]
  8. P. R. T. Jess,  et al. "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Express 14,5779-5791 (2006).
    [CrossRef] [PubMed]
  9. S. Ebert, K. Travis, B. Lincoln, and J. Guck, "Fluorescence ratio thermometry in a microfludic dual-beam laser trap," Opt. Express 15, 15493-15499 (2007).
    [CrossRef] [PubMed]
  10. R. Eriksen, V. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602. (2002).
    [PubMed]
  11. M. MacDonald, G. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
    [CrossRef] [PubMed]
  12. J. B. Beltman, A. F. Maree, and R. de Boer, "Spatial modelling of brief and long interactions between T cells and dendritic cells," J. Immunol. Cell Biol. 85, 306-314 (2007).
    [CrossRef]
  13. J. Wu, D. Day, and M. Gu, "A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal," Appl. Phys. Lett. 92, 071108-071110 (2008).
    [CrossRef]
  14. G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
    [CrossRef] [PubMed]
  15. K. Franze,  et al., "Muller cells are living optical fibers in the vertebrate retina," PNAS,  104, 8287-8292 (2007).
    [CrossRef] [PubMed]
  16. H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
    [CrossRef] [PubMed]
  17. A. Schoenle, and S. Hell, "Heating by absorption in the focal plane of an objective lens," Opt. Lett. 23,325-327 (1998).
    [CrossRef]
  18. D. J. Segelstein, "The complex refractive index of water," (University of Missouri-Kansas City, 1981), as reported at http://atol.ucsd.edu/%7Epflatau/refrtab/water/Segelstein.H2Orefind.
  19. F. Reif, Fundamentals of statistical and thermal physics (McGraw-Hill, New York, 1965).
  20. C. Wandrey, and D. S. Vidal, "Purification of biometric biomaterials," Ann. N.Y. Acad. Sci. 944,187-198 (2001).
    [CrossRef]
  21. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical physics, (Pergamon Press, Oxford New York, 1980).
  22. A. B. Lyons, and C. R. Parish, "Determination of lymphocyte division by flow cytometry," J. Immunol. Methods 171,131-137 (1994).
    [CrossRef] [PubMed]
  23. C. G. Yeh, B. Hsi, and W. P. Faulk, "Propidium iodide as a nuclear marker in immunofluorescence: II. Use with cellular identification and viability studies," J. Immunol. Methods 43,269 (1981).
    [CrossRef] [PubMed]

2008 (1)

J. Wu, D. Day, and M. Gu, "A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal," Appl. Phys. Lett. 92, 071108-071110 (2008).
[CrossRef]

2007 (3)

J. B. Beltman, A. F. Maree, and R. de Boer, "Spatial modelling of brief and long interactions between T cells and dendritic cells," J. Immunol. Cell Biol. 85, 306-314 (2007).
[CrossRef]

K. Franze,  et al., "Muller cells are living optical fibers in the vertebrate retina," PNAS,  104, 8287-8292 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, "Fluorescence ratio thermometry in a microfludic dual-beam laser trap," Opt. Express 15, 15493-15499 (2007).
[CrossRef] [PubMed]

2006 (2)

P. R. T. Jess,  et al. "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Express 14,5779-5791 (2006).
[CrossRef] [PubMed]

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

2005 (1)

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
[CrossRef] [PubMed]

2003 (1)

M. MacDonald, G. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

2002 (2)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

R. Eriksen, V. Daria, and J. Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602. (2002).
[PubMed]

2001 (1)

C. Wandrey, and D. S. Vidal, "Purification of biometric biomaterials," Ann. N.Y. Acad. Sci. 944,187-198 (2001).
[CrossRef]

1998 (1)

1997 (1)

M. Gu, P. C. Ke and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68,3666-3668 (1997).
[CrossRef]

1994 (2)

W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric study of the forces on microspheres held by optical tweezers," Appl. Opt. 33,1735-1748 (1994).
[CrossRef] [PubMed]

A. B. Lyons, and C. R. Parish, "Determination of lymphocyte division by flow cytometry," J. Immunol. Methods 171,131-137 (1994).
[CrossRef] [PubMed]

1992 (1)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

1990 (1)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348,348-352 (1990).
[CrossRef] [PubMed]

1981 (1)

C. G. Yeh, B. Hsi, and W. P. Faulk, "Propidium iodide as a nuclear marker in immunofluorescence: II. Use with cellular identification and viability studies," J. Immunol. Methods 43,269 (1981).
[CrossRef] [PubMed]

Akselrod, G. M.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Arias-Gonzalez, J. R.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
[CrossRef] [PubMed]

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

Beltman, J. B.

J. B. Beltman, A. F. Maree, and R. de Boer, "Spatial modelling of brief and long interactions between T cells and dendritic cells," J. Immunol. Cell Biol. 85, 306-314 (2007).
[CrossRef]

Berns, M. W.

Block, S. M.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348,348-352 (1990).
[CrossRef] [PubMed]

Bustamante, C.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
[CrossRef] [PubMed]

Daria, V.

Day, D.

J. Wu, D. Day, and M. Gu, "A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal," Appl. Phys. Lett. 92, 071108-071110 (2008).
[CrossRef]

de Boer, R.

J. B. Beltman, A. F. Maree, and R. de Boer, "Spatial modelling of brief and long interactions between T cells and dendritic cells," J. Immunol. Cell Biol. 85, 306-314 (2007).
[CrossRef]

Dholakia, K.

M. MacDonald, G. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

Ebert, S.

Eriksen, R.

Faulk, W. P.

C. G. Yeh, B. Hsi, and W. P. Faulk, "Propidium iodide as a nuclear marker in immunofluorescence: II. Use with cellular identification and viability studies," J. Immunol. Methods 43,269 (1981).
[CrossRef] [PubMed]

Franze, K.

K. Franze,  et al., "Muller cells are living optical fibers in the vertebrate retina," PNAS,  104, 8287-8292 (2007).
[CrossRef] [PubMed]

Gan, X. S.

M. Gu, P. C. Ke and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68,3666-3668 (1997).
[CrossRef]

Gluckstad, J.

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348,348-352 (1990).
[CrossRef] [PubMed]

Gu, M.

J. Wu, D. Day, and M. Gu, "A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal," Appl. Phys. Lett. 92, 071108-071110 (2008).
[CrossRef]

M. Gu, P. C. Ke and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68,3666-3668 (1997).
[CrossRef]

Guck, J.

Hell, S.

Hsi, B.

C. G. Yeh, B. Hsi, and W. P. Faulk, "Propidium iodide as a nuclear marker in immunofluorescence: II. Use with cellular identification and viability studies," J. Immunol. Methods 43,269 (1981).
[CrossRef] [PubMed]

Jess, P. R. T.

Ke, P. C.

M. Gu, P. C. Ke and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68,3666-3668 (1997).
[CrossRef]

Li, C.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Lincoln, B.

Lyons, A. B.

A. B. Lyons, and C. R. Parish, "Determination of lymphocyte division by flow cytometry," J. Immunol. Methods 171,131-137 (1994).
[CrossRef] [PubMed]

MacDonald, M.

M. MacDonald, G. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

Mao, H.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
[CrossRef] [PubMed]

Maree, A. F.

J. B. Beltman, A. F. Maree, and R. de Boer, "Spatial modelling of brief and long interactions between T cells and dendritic cells," J. Immunol. Cell Biol. 85, 306-314 (2007).
[CrossRef]

Matsudaira, P.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Mirsaidov, U.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Parish, C. R.

A. B. Lyons, and C. R. Parish, "Determination of lymphocyte division by flow cytometry," J. Immunol. Methods 171,131-137 (1994).
[CrossRef] [PubMed]

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348,348-352 (1990).
[CrossRef] [PubMed]

Schoenle, A.

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

Smith, S. B.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
[CrossRef] [PubMed]

Sonek, G. J.

Spalding, G.

M. MacDonald, G. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

Timp, G.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Timp, K.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Timp, R.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Timp, W.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Tinoco, I.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
[CrossRef] [PubMed]

Travis, K.

Vidal, D. S.

C. Wandrey, and D. S. Vidal, "Purification of biometric biomaterials," Ann. N.Y. Acad. Sci. 944,187-198 (2001).
[CrossRef]

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

Wandrey, C.

C. Wandrey, and D. S. Vidal, "Purification of biometric biomaterials," Ann. N.Y. Acad. Sci. 944,187-198 (2001).
[CrossRef]

Wright, W. H.

Wu, J.

J. Wu, D. Day, and M. Gu, "A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal," Appl. Phys. Lett. 92, 071108-071110 (2008).
[CrossRef]

Yeh, C. G.

C. G. Yeh, B. Hsi, and W. P. Faulk, "Propidium iodide as a nuclear marker in immunofluorescence: II. Use with cellular identification and viability studies," J. Immunol. Methods 43,269 (1981).
[CrossRef] [PubMed]

Zhao, Q.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

Ann. N.Y. Acad. Sci. (1)

C. Wandrey, and D. S. Vidal, "Purification of biometric biomaterials," Ann. N.Y. Acad. Sci. 944,187-198 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Wu, D. Day, and M. Gu, "A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal," Appl. Phys. Lett. 92, 071108-071110 (2008).
[CrossRef]

Biophys. J. (3)

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laser guided assembly of heterotypic 3D living cell microarrays," Biophys. J. 91,3465-3473 (2006).
[CrossRef] [PubMed]

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89,1308-1316 (2005).
[CrossRef] [PubMed]

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

J. Immunol. Cell Biol. (1)

J. B. Beltman, A. F. Maree, and R. de Boer, "Spatial modelling of brief and long interactions between T cells and dendritic cells," J. Immunol. Cell Biol. 85, 306-314 (2007).
[CrossRef]

J. Immunol. Methods (2)

A. B. Lyons, and C. R. Parish, "Determination of lymphocyte division by flow cytometry," J. Immunol. Methods 171,131-137 (1994).
[CrossRef] [PubMed]

C. G. Yeh, B. Hsi, and W. P. Faulk, "Propidium iodide as a nuclear marker in immunofluorescence: II. Use with cellular identification and viability studies," J. Immunol. Methods 43,269 (1981).
[CrossRef] [PubMed]

Nature (2)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348,348-352 (1990).
[CrossRef] [PubMed]

M. MacDonald, G. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

PNAS (1)

K. Franze,  et al., "Muller cells are living optical fibers in the vertebrate retina," PNAS,  104, 8287-8292 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Gu, P. C. Ke and X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Rev. Sci. Instrum. 68,3666-3668 (1997).
[CrossRef]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296,1101-1103 (2002).
[CrossRef] [PubMed]

Other (5)

J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed., (Plenum Press, New York, 1995).

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed., (Cambridge University Press, Cambridge, 1997).

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical physics, (Pergamon Press, Oxford New York, 1980).

D. J. Segelstein, "The complex refractive index of water," (University of Missouri-Kansas City, 1981), as reported at http://atol.ucsd.edu/%7Epflatau/refrtab/water/Segelstein.H2Orefind.

F. Reif, Fundamentals of statistical and thermal physics (McGraw-Hill, New York, 1965).

Supplementary Material (2)

» Media 1: MOV (3646 KB)     
» Media 2: MOV (4077 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cartoon representing the experimental configuration.

Fig. 2.
Fig. 2.

Snapshots demonstrating trapping and controlled movement of a single T cell within a large population. Scale bar=300µm.

Fig. 3.
Fig. 3.

(a). A movie demonstrating optical trapping a T cell using a 10×/0.4N.A. lens. This is a typical movie which shows the movement of a T cell within a large population (Media 1). Figure 3(b). features a close-up movie of an optically trapped T cell using a 10×/0.4N.A. lens. A digital zoom of 4x was employed to visualize the cell trapping at higher magnification (Media 2).

Fig. 4.
Fig. 4.

(a). Results of short-term cell viability studies using Propidium Iodide as a cell damage indicator. (a), features a grid of images displaying T cells labelled with CFSE (green) under varying average laser power and exposure times. Cell damage is indicated by propidium iodide (PI, red). Scale bar, 50µm. Figure 4(b). displays a graphic representation of the result data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( r , r ) = P α 2 π K 1 n ( r r ) ,
γ = 6 π η d .
F T = 4 γ k B T

Metrics