Abstract

We analyze the effects of optical variables, such as illumination state, focal position variation, near-field air-gap height, and refractive index mismatch, in immersion lens-based near-field optics on the resultant field propagation characteristics, including spot size, focal depth, and aberrations. First, to investigate the general behaviors of various incident polarization states, focused fields near the focal planes in simple two- or three-layered media structures are calculated under considerations of refractive index mismatch, geometric focal position variations, and air-gap height in a multi-layered medium. Notably, for solid immersion near-field optics, although purely TM polarized illumination generates a stronger and 15% smaller beam spot size in the focal region than in the case of circularly polarized incident light, the intensity of the focused field decreases sharply from the interface between air and the third medium. For the same optical configurations, we show that changes in geometric focal position to the recording or detecting medium increases focal depth. Finally, through focused field analysis on a ROM (read-only memory) and a RW (rewritable) medium, compound effects of considered variables are discussed. The resultant field propagation behaviors described in this study may be applicable to the design of either highly efficient reflection or transmission near-field optics for immersion lens based information storage, microscopy and lithographic devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  2. C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
    [CrossRef]
  3. T. Chen, T. D. Milster, S.-H. Yang, and D. Hansen, "Evanescent imaging with induced polarization by using a solid immersion lens," Opt. Lett. 32, 124-126 (2007).
    [CrossRef]
  4. T. Chen and T. D. Milster, "Properties of induced polarization evanescent reflection with a solid immersion lens (SIL)," Opt. Express 15, 1191-1204 (2007).
    [CrossRef] [PubMed]
  5. M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
    [CrossRef]
  6. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, "Evanescent wave imaging in optical lithography," Proc. SPIE 6154, 100-108 (206).
  7. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, "Four beams evanescent waves interference lithography for patterning of two dimensional features," Opt. Express 15, 3437-3451 (2007).
    [CrossRef] [PubMed]
  8. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
    [CrossRef]
  9. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997).
    [CrossRef] [PubMed]
  10. F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
    [CrossRef]
  11. J. S. Jo, T. D. Milster, and J. K. Erwin, "Phase and amplitude apodization induced by focusing through an evanescent gap in a solid immersion lens microscope," Opt. Eng. 41, 1866-1875 (2002).
    [CrossRef]
  12. P. Török, P. Varga, Z. Laczik, and G.R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).
    [CrossRef]
  13. P. Török, P. Varga, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I," J. Opt. Soc. Am. A 12, 2136-2144 (1995).
    [CrossRef]
  14. P. Török, P. Varga, A. Konkol, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II," J. Opt. Soc. Am. A 13, 2232-2238 (1996).
    [CrossRef]
  15. A. van de Nes, L. Billy, S. Pereira, and J. Braat, "Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system," Opt. Express 12, 1281-1293 (2004).
    [CrossRef] [PubMed]
  16. T. D. Milster, J. S. Jo, and K. Hirota, "Roles of Propagating and Evanescent Waves in Solid Immersion Lens Systems," Appl. Opt. 38, 5046-5057 (1999).
    [CrossRef]
  17. S.-S. Kim, Y.-K. Kim, I.-S. Park, and S.-C. Shin, "Optical properties of a thin-film stack illuminated by a focused field," J. Opt. Soc. Am. A 17, 1454-1460 (2000).
    [CrossRef]
  18. D. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001).
    [CrossRef] [PubMed]
  19. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
    [CrossRef]
  20. Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
    [CrossRef]

2007 (3)

2006 (2)

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

2005 (1)

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

2004 (2)

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

A. van de Nes, L. Billy, S. Pereira, and J. Braat, "Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system," Opt. Express 12, 1281-1293 (2004).
[CrossRef] [PubMed]

2002 (1)

J. S. Jo, T. D. Milster, and J. K. Erwin, "Phase and amplitude apodization induced by focusing through an evanescent gap in a solid immersion lens microscope," Opt. Eng. 41, 1866-1875 (2002).
[CrossRef]

2001 (2)

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

D. Biss and T. Brown, "Cylindrical vector beam focusing through a dielectric interface," Opt. Express 9, 490-497 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1997 (1)

1996 (1)

1995 (2)

1990 (1)

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Balistreri, M. L. M.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

Billy, L.

Biss, D.

Booker, G. R.

Booker, G.R.

Braat, J.

Brown, T.

Chen, J.

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

Chen, T.

Chua, J. K.

Erwin, J. K.

J. S. Jo, T. D. Milster, and J. K. Erwin, "Phase and amplitude apodization induced by focusing through an evanescent gap in a solid immersion lens microscope," Opt. Eng. 41, 1866-1875 (2002).
[CrossRef]

Furuki, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Godfried, H. P.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Hansen, D.

Hayashi, S.

Helseth, L. E.

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Hendriks, B. H. W.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

Hirota, K.

Houwman, E. P.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Ichimura, I.

Jo, J. S.

J. S. Jo, T. D. Milster, and J. K. Erwin, "Phase and amplitude apodization induced by focusing through an evanescent gap in a solid immersion lens microscope," Opt. Eng. 41, 1866-1875 (2002).
[CrossRef]

T. D. Milster, J. S. Jo, and K. Hirota, "Roles of Propagating and Evanescent Waves in Solid Immersion Lens Systems," Appl. Opt. 38, 5046-5057 (1999).
[CrossRef]

Kim, S.-S.

Kim, Y.-K.

Kino, G. S.

Kondo, T.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Konkol, A.

Kriele, P. A. C.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Laczik, Z.

Lee, J.

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

Lee, J. I.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

Lin, Q. Y.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Milster, T. D.

Murukeshan, V. M.

Nakaoki, A.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Nelissen, W. H. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Padiy, A. V.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

Park, I.-S.

Pels, G. J.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Pereira, S.

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Saito, K.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Schaich, T. J.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Shin, S.-C.

Shinoda, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Spaaij, P. G. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Takeda, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Tan, S. K.

Török, P.

Urbach, H. P.

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

van de Nes, A.

van den Eerenbeemd, J. M. A.

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

van der Aa, M. A. H.

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

van der Mark, M. B.

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

van Oerle, B. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Varga, P.

Verschuren, C. A.

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Yamamoto, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Yang, S.-H.

Ye, X.

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

Zijp, F.

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

Y. Zhang, X. Ye, and J. Chen, "Converging spherical wave propagation in a hemispherical solid lens," J. Opt. A Pure Appl. Opt. 8, 578-583 (2006).
[CrossRef]

J. Opt. Soc. Am. A (4)

Jpn. J. Appl. Phys. (2)

C. A. Verschuren, F. Zijp, J. Lee, J. M. A. van den Eerenbeemd, M. B. van der Mark, and H. P. Urbach, "Near-field recording on first-surface write-once media with a NA=1.9 solid immersion lens," Jpn. J. Appl. Phys. 44, 3564-3567 (2005).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman,W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, "High-Density Near-Field Readout Using Diamond Solid Immersion Lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Opt. Commun. (1)

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001).
[CrossRef]

Opt. Eng. (1)

J. S. Jo, T. D. Milster, and J. K. Erwin, "Phase and amplitude apodization induced by focusing through an evanescent gap in a solid immersion lens microscope," Opt. Eng. 41, 1866-1875 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. R. Soc. London, Ser. A (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Proc. SPIE (1)

F. Zijp, M. B. van der Mark, J. I. Lee, C. A. Verschuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, "Near field read-out of a 50 GB first-surface disk with NA=1.9 and a proposal for a cover-layer incident, dual-layer near field system," Proc. SPIE 5380, 209-223 (2004).
[CrossRef]

Other (1)

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, "Evanescent wave imaging in optical lithography," Proc. SPIE 6154, 100-108 (206).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Schematic configuration of aplanatic imaging optics with stratified media near the focal region. Incident light distribution, E 0 , on the entrance pupil of the pre-focusing lens maps to E 1 on the exit pupil with constant radius of curvature of geometric focal length f. θ max is the incident angle of the marginal ray focusing through the pre-focusing lens. A stratified thin film stack, in which each thin film has a different refractive index n i , is located near the focal plane. In a stratified thin film stack, sequential medium transitions are denoted by d i . The geometric focal position of the pre-focusing lens is set to z=0 in this configuration. Generally, in SIL-based near-field optics, the bottom surface of the hemispherical SIL is located precisely at the geometric focal position of the pre-focusing lens, and NA of the optics is defined as n SIL·sinθ max.

Fig. 2.
Fig. 2.

Two primary optical configurations. (a) First configuration: SIL to air. Incident light is focused by a pre-focusing lens and a SIL with an effective NA of 1.9. The medium transition is positioned at the geometric focal position of the pre-focusing lens. (b) Second configuration: Air to a medium with refractive index of 2.0. The medium transition is positioned at the geometric focal position of the objective lens with NA of 0.911.

Fig. 3.
Fig. 3.

Absolute amplitudes of each electric field component, (a) radial, (b) azimuthal, and (c) longitudinal, near the focal region for the first configuration given radially and azimuthally polarized illumination.

Fig. 4.
Fig. 4.

Absolute amplitudes of each electric field component, (a) radial, (b) azimuthal, and (c) longitudinal, near the focal region for the second configuration given radially and azimuthally polarized illumination.

Fig. 5.
Fig. 5.

Absolute amplitudes of each electric field component, (a) |E x |, (b) |E y |, and (c) |E z | for the first configuration and (d) |E x |, (e) |E y |, and (f) |E z | for the second configuration near the focal region, given circularly polarized illumination.

Fig. 6.
Fig. 6.

Comparisons of absolute axial intensity profiles along the optical axis for various cases of illumination for (a) the first configuration, and (b) the second configuration.

Fig. 7.
Fig. 7.

Comparison of normalized transverse intensity profiles for different planes in the focal regime given illumination by radial, circular, and linear polarization. Plots (a), (b), and (c) are spot profiles on the z=-λ/5, 0, and λ/5, respectively, for the first configuration. Plots (d), (e), and (f) are spot profiles on the z=-λ/5, 0, and λ/5, respectively, for the second configuration. In these plots, “Radial” and “Circular” indicate radially and circularly polarized illumination, respectively. “Linear 0deg. plane”, and “Linear 90deg. plane” indicate spot profiles on the plane ϕ p =0 and ϕ p =π/2 for the case of linearly polarized illumination.

Fig. 8.
Fig. 8.

Absolute amplitude distributions of focused fields due to illumination by radial, azimuthal, circular, and linear polarization in the optical configuration composed of an objective lens with NA of 0.911, hemi-spherical SIL with refractive index of 2.086, λ/8-thick air-gap, and an index-matched medium to the SIL.

Fig. 9.
Fig. 9.

Comparison of normalized transverse intensity profiles on the different planes in the focal regime and absolute axial intensity profiles along the optical axis for illumination by radial, circular, and linear polarization. Plots (a), (b), and (c) are transverse intensity profiles inside the air-gap (Plane I), on the top surface of the third medium (Plane II), and on the z=λ/5 (Plane III), respectively, for the same configuration as in Fig. 8. Plot (d) compares absolute axial intensity profiles along the optical axis.

Fig. 10.
Fig. 10.

Focused electric field behavior due to radially polarized illumination in the case of d 1=-λ and d 2=-(1-λ/16) in the z-coordinate. NA of the system is 1.9, and the refractive index of the SIL and the third medium are 2.086. (a) Absolute amplitude distribution of electric field near the focal region. (b) Focused beam intensity profile on the z=0 plane.

Fig. 11.
Fig. 11.

Focused electric field behavior given circularly polarized illumination for the two cases of media configurations, d 1=-λ/16 and d 1=-λ/2, with the same air-gap height of λ/16. (a) and (b) represent absolute amplitude distributions of the electric field for the two cases. (c) shows transverse absolute intensity profiles near the focal plane and (d) shows axial absolute intensity profiles along the optical axis for the two cases.

Fig. 12.
Fig. 12.

Schematic diagrams of SIL-based NFR optics with Si-ROM medium and rewritable (RW) medium. For both models, wavelengths of the illuminated light, effective NA of the optics, and air-gap height are assumed to be 405nm, 1.9, and 30nm, respectively.

Fig. 13.
Fig. 13.

Absolute amplitude distributions of focused fields from illumination by (a) radial, (b) circular, and (c) linear polarization in the optical configuration of Model 1 described in Fig. 12.

Fig. 14.
Fig. 14.

Comparisons of normalized intensity profiles (a) inside the air-gap and (b) on the top surface of the third medium for radially, circularly, and linearly polarized illuminations in the optical configuration of Model 1 described in Fig. 12.

Fig. 15.
Fig. 15.

Electric field distributions near the focal regions of two different models with top SiN layers of different thicknesses. (a) and (b) The absolute amplitude distributions of focused electric field given SiN layer thicknesses of 15 nm and 200 nm, respectively. Plot (c) compares normalized transverse intensity profiles on the focal planes of z=0, precisely in the middle of the GST layer, and z=-λ/4. Plot (d) compares axial intensity profiles along the optical axis.

Tables (4)

Tables Icon

Table 1. Transverse full width half maximum (FWHM) spot sizes in the focal region for the different models and different illumination states. Observed planes are positioned near the focal position, z=0.

Tables Icon

Table 2. Transverse FWHM spot sizes in the focal region for the three-layered configuration with different illumination states. The three observed planes are positioned near the second interface, z=0. All spot sizes are given in units of wavelength.

Tables Icon

Table 3. Calculated Zernike coefficients of non-zero primary aberrations induced by different air gaps for the configuration of SIL-air-gap index-matched medium to the SIL with two different illuminations and linear or circular polarization.

Tables Icon

Table 4. Calculated Zernike coefficients of non-zero primary aberrations induced by different air gaps for the configuration of SIL-air-gap-Si-disk with two different illuminations and linear or circular polarization.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E Img ( x , y , z ) = i 2 π Ω a ( k x , k y ) k z e i ( k x x + k y y + k z z ) d k x d k y
E Img ( r p , ϕ p , z p ) = if 0 NAk 0 [ A i + e i k zi z p + A i e i k zi z p ] k z 1 k 1 k r d k r
A i linear ± = [ g i 0 ± J 0 g i 2 ± J 2 g i 2 ± J 2 g i 1 ± J 1 ] ,
A i circular ± = 1 2 [ ( g 0 ± i J 0 g i 2 ± J 2 ) e i π 4 g i 2 ± J 2 e i π 4 g i 2 ± J 2 e i π 4 + ( g i 0 ± J 0 + g i 2 ± J 2 ) e i π 4 g i 1 ± J 1 e i π 4 g i 1 ± J 1 e i π 4 ] ,
A i radial ± = [ ( g i 0 ± g i 2 ± ) J 1 ( g i 0 ± g i 2 ± ) J i g i 1 ± J 0 ] ,
A i azimuthal ± = [ ( g i 0 ± + g i 2 ± ) J 1 ( g i 0 ± + g i 2 ± ) J 1 0 ] ,
E Img ( ρ , k ϕ ) = A Img ( ρ , k ϕ ) · exp [ i · W ( ρ , k ϕ ) ]
A n , m = 2 ( n + 1 ) ( 1 + δ m 0 ) π 0 2 π 0 1 W ( ρ , k ϕ ) Z n , m ( ρ , k ϕ ) ρ d ρ d k ϕ

Metrics