Abstract

An analytic solution to the problem of determining photon direction after successive scatterings in an infinite, homogeneous, isotropic medium, where each scattering event is in accordance with a two-term Henyey-Greenstein phase function, is presented and compared against Monte Carlo simulation results. The photon direction is described by a probability density function of the dot product of the initial direction and the direction after multiple scattering events, and it is found that such a probability density function can be represented as a weighted series of one-term Henyey-Greenstein phase functions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
    [CrossRef]
  2. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002).
    [CrossRef] [PubMed]
  3. L. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley and Sons, 2007), Ch. 3.
  4. N. Pfeiffer and G. H. Chapman, "Monte Carlo Simulations of the Growth and Decay of Quasi-Ballistic Photon Fractions with Depth in an Isotropic Medium," Proc. SPIE 5695, 136-147 (2005).
    [CrossRef]
  5. I. Turcu and R. Bratfalean, "Narrowly peaked forward light scattering on particulate media I. Assessment of the multiple scattering contributions to the effective phase function," J. Opt. A: Pure Appl. Opt. 10, (2008).
    [CrossRef]
  6. W. E. Vargas and G. A. Niklasson, "Forward-scattering ratios and average pathlength parameter in radiative transfer models," J. Phys. Condens. Matter 9, 9083-9096 (1997).
    [CrossRef]
  7. H. C. van de Hulst, Multiple Light Scattering, Vol 1 (Academic, 1980).
  8. T. Binzoni1, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, "The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics," Phys. Med. Biol. 51, N313-N322 (2006).
    [CrossRef]
  9. S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).
  10. V. I. Haltrin, "Two-term Henyey-Greenstein light scattering phase function for seawater," in IGARSS �??99: Proceeding of the International Geoscience and Remote Sensing Symposium, T. I. Stein, ed. (IEEE, 1999), pp. 1423-1425.
  11. S. A. Prahl, Light Transport in Tissue, App. A1, PhD Thesis, (University of Texas at Austin, 1988).
  12. R. A. Leathers and N. J. McCormick, "Ocean inherent optical property estimation from irradiances," Appl. Opt. 36, 8685-8698 (1997).
    [CrossRef]

2008

I. Turcu and R. Bratfalean, "Narrowly peaked forward light scattering on particulate media I. Assessment of the multiple scattering contributions to the effective phase function," J. Opt. A: Pure Appl. Opt. 10, (2008).
[CrossRef]

2006

T. Binzoni1, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, "The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics," Phys. Med. Biol. 51, N313-N322 (2006).
[CrossRef]

2005

N. Pfeiffer and G. H. Chapman, "Monte Carlo Simulations of the Growth and Decay of Quasi-Ballistic Photon Fractions with Depth in an Isotropic Medium," Proc. SPIE 5695, 136-147 (2005).
[CrossRef]

2002

1997

W. E. Vargas and G. A. Niklasson, "Forward-scattering ratios and average pathlength parameter in radiative transfer models," J. Phys. Condens. Matter 9, 9083-9096 (1997).
[CrossRef]

R. A. Leathers and N. J. McCormick, "Ocean inherent optical property estimation from irradiances," Appl. Opt. 36, 8685-8698 (1997).
[CrossRef]

1987

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

1941

L.G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Alter, C. A.

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Binzoni, T.

T. Binzoni1, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, "The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics," Phys. Med. Biol. 51, N313-N322 (2006).
[CrossRef]

Boss, E.

Bratfalean, R.

I. Turcu and R. Bratfalean, "Narrowly peaked forward light scattering on particulate media I. Assessment of the multiple scattering contributions to the effective phase function," J. Opt. A: Pure Appl. Opt. 10, (2008).
[CrossRef]

Chapman, G. H.

N. Pfeiffer and G. H. Chapman, "Monte Carlo Simulations of the Growth and Decay of Quasi-Ballistic Photon Fractions with Depth in an Isotropic Medium," Proc. SPIE 5695, 136-147 (2005).
[CrossRef]

Greenstein, J. L.

L.G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Henyey, L.G.

L.G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Jacques, S. L.

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Leathers, R. A.

McCormick, N. J.

Mobley, C. D.

Niklasson, G. A.

W. E. Vargas and G. A. Niklasson, "Forward-scattering ratios and average pathlength parameter in radiative transfer models," J. Phys. Condens. Matter 9, 9083-9096 (1997).
[CrossRef]

Pfeiffer, N.

N. Pfeiffer and G. H. Chapman, "Monte Carlo Simulations of the Growth and Decay of Quasi-Ballistic Photon Fractions with Depth in an Isotropic Medium," Proc. SPIE 5695, 136-147 (2005).
[CrossRef]

Prahl, S. A.

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Sundman, L. K.

Turcu, I.

I. Turcu and R. Bratfalean, "Narrowly peaked forward light scattering on particulate media I. Assessment of the multiple scattering contributions to the effective phase function," J. Opt. A: Pure Appl. Opt. 10, (2008).
[CrossRef]

Vargas, W. E.

W. E. Vargas and G. A. Niklasson, "Forward-scattering ratios and average pathlength parameter in radiative transfer models," J. Phys. Condens. Matter 9, 9083-9096 (1997).
[CrossRef]

Appl. Opt.

Astrophys. J.

L.G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

I. Turcu and R. Bratfalean, "Narrowly peaked forward light scattering on particulate media I. Assessment of the multiple scattering contributions to the effective phase function," J. Opt. A: Pure Appl. Opt. 10, (2008).
[CrossRef]

J. Phys. Condens. Matter

W. E. Vargas and G. A. Niklasson, "Forward-scattering ratios and average pathlength parameter in radiative transfer models," J. Phys. Condens. Matter 9, 9083-9096 (1997).
[CrossRef]

Laser Life Sci.

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular Dependence of HeNe laser Light Scattering by Human Dermis," Laser Life Sci. 1, 309-333 (1987).

Phys. Med. Biol.

T. Binzoni1, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, "The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics," Phys. Med. Biol. 51, N313-N322 (2006).
[CrossRef]

Proc. SPIE

N. Pfeiffer and G. H. Chapman, "Monte Carlo Simulations of the Growth and Decay of Quasi-Ballistic Photon Fractions with Depth in an Isotropic Medium," Proc. SPIE 5695, 136-147 (2005).
[CrossRef]

Other

L. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley and Sons, 2007), Ch. 3.

V. I. Haltrin, "Two-term Henyey-Greenstein light scattering phase function for seawater," in IGARSS �??99: Proceeding of the International Geoscience and Remote Sensing Symposium, T. I. Stein, ed. (IEEE, 1999), pp. 1423-1425.

S. A. Prahl, Light Transport in Tissue, App. A1, PhD Thesis, (University of Texas at Austin, 1988).

H. C. van de Hulst, Multiple Light Scattering, Vol 1 (Academic, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Probability distribution of scattering cosine for OTHG phase function, anisotropy factor g=0.9, scattering order n=1..4, symbols are Monte Carlo results, lines are phg, n (cos θ).

Fig. 2.
Fig. 2.

Probability distribution of scattering cosine for OTHG phase function, anisotropy factor g=0.9, scattering order n=10,20,..,50, symbols are Monte Carlo results, lines are phg, n (cos θ).

Fig. 3.
Fig. 3.

Probability distribution of scattering cosine for TTHG phase function, α=0.9, g α =0.9, β=0.1, g β =0.0, scattering order n=1..4,10, symbols are Monte Carlo results, lines are phg2, n (cos θ).

Fig. 4.
Fig. 4.

Probability distribution of scattering cosine for TTHG phase function, α=0.96, g α =0.9, β=0.04, g β =-0.26, scattering order n=1..4,10, symbols are Monte Carlo results, lines are phg2, n (cos θ).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

p h g ( Ω 0 · Ω , g ) = p h g ( cos θ , g ) = 1 2 [ 1 g 2 ( 1 + g 2 2 g cos θ ) 3 2 ]
p hg ( cos θ , g ) = Σ l = 0 ( l + 1 2 ) g l p l ( cos θ )
p hg 2 ( cos θ , α , g α , β , g β ) = α p hg ( cos θ , g α ) + β p hg ( cos θ , g β )
p hg 2 ( cos θ , α , g α , β , g β ) = Σ l = 0 ( l + 1 2 ) ( α g α l + β g β l ) P l ( cos θ )
p hg , n ( cos θ , g ) = Σ l = 0 ( l + 1 2 ) ( g l ) n P l ( cos θ ) = p hg ( cos θ , g n )
p hg 2 , n ( cos θ , α , g α , β , g β ) = Σ l = 0 ( l + 1 2 ) ( α g α l + β g β l ) n P l ( cos θ )
p hg 2 , 2 ( cos θ , α , g α , β , g β ) = α 2 p hg , α α ( cos θ , g α ) + α β p hg , α β ( cos θ , g α β )
+ β α p hg , β α ( cos θ , g β α ) + β 2 p hg , β β ( cos θ , g β )
p hg 2 , 0 ( cos θ , α , g α , β , g β ) = p hg ( cos θ , 1 )
p hg 2 , 1 ( cos θ , α , g α , β , g β ) = α p hg ( cos θ , g α ) + β p hg ( cos θ , g β )
p hg 2 , 2 ( cos θ , α , g α , β , g β ) = α 2 p hg ( cos θ , g α 2 ) + 2 α β p hg ( cos θ , g α g β )
+ β 2 p hg ( cos θ , g β 2 )
p hg 2 , 3 ( cos θ , α , g α , β , g β ) = α 3 p hg ( cos θ , g α 3 ) + 3 α 2 β p hg ( cos θ , g α 2 g β )
+ 3 α β 2 p hg ( cos θ , g α g β 2 ) + β 3 p hg ( cos θ , g β 3 )
p hg 2 , n ( cos θ , α , g α , β , g β ) = Σ i = 0 n ( n i ) α ( n i ) β i p hg ( cos θ , g α ( n i ) g β i )
cos θ n = Σ i = 0 n ( n i ) α ( n i ) β i g α ( n i ) g β i
cos θ ( g ) = { 1 2 g [ 1 + g 2 ( 1 g 2 1 g + 2 g ξ ) 2 ] if g 0 2 ξ 1 if g 0
cos θ ( α , g α , g β ) = { cos θ ( g α ) if χ < α cos θ ( g β ) otherwise

Metrics