Abstract

We have developed a dual-beam Fourier domain optical Doppler tomography (FD-ODT) system to image zebrafish (Danio rerio) larvae. Two beams incident on the zebrafish with a fixed angular separation allow absolute blood flow velocity measurement to be made regardless of vessel orientation in a sagittal plane along which the heart and most of the major vasculature lie. Two spectrometers simultaneously acquire spectra from two interferometers with a typical (maximum) line rate of 18 (28) kHz. The system was calibrated using diluted milk and microspheres and a 0.5-mm thick flow cell. The average deviation from the set velocity from 1.4 to 34.6 mm/s was 4.1%. Three-dimensional structural raster videos were acquired of an entire fish, and through the head, heart, and upper tail of the fish. Coarse features that were resolved include the telencephalon, retina, both heart chambers (atrium and ventricle), branchial arches, and notochord. Other fine structures within these organs were also resolved. Zebrafish are an important tool for high-throughput screening of new pharmacological agents. The ability to generate high-resolution three-dimensional structural videos and accurately measure absolute flow rates in major vessels with FD-ODT provides researchers with additional metrics by which the efficacy of new drugs can be assessed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
    [CrossRef] [PubMed]
  2. D. Piao and Q. Zhu, "Quantifying Doppler Angle and Mapping Flow Velocity by a Combination of Doppler-Shift and Doppler-Bandwidth Measurements in Optical Doppler Tomography," Appl. Opt. 42, 5158 (2003).
    [CrossRef] [PubMed]
  3. S. G. Proskurin, Y. He, and R. K. Wang, "Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography," Opt. Lett. 28, 1227-1229 (2000).
    [CrossRef]
  4. D. P. Davé and T. E. Milner, "Doppler-angle measurement in highly scattering media," Opt. Lett. 25, 1523-1525 (2000).
    [CrossRef]
  5. A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, "Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography," Proc. SPIE 6079,607925 (2006).
    [CrossRef]
  6. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, "Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography," Opt. Lett. 32, 506-508 (2007).
    [CrossRef] [PubMed]
  7. N. V. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
    [CrossRef] [PubMed]
  8. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-1638 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1627.
    [CrossRef] [PubMed]
  9. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, "Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser," Opt. Express 15, 6251-6267 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-6251.
    [CrossRef] [PubMed]
  10. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
    [CrossRef]
  11. B. Park, M. C. Pierce, B. Cense, S. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-3931.
    [CrossRef] [PubMed]
  12. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum.submitted.
  13. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377.
    [CrossRef] [PubMed]
  14. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
    [CrossRef] [PubMed]
  15. A. Nasevicius and S.C Ekker, "Effective targeted gene �??knockdown�?? in zebrafish," Nature Genetics 26, 216-220 (2000).
    [CrossRef] [PubMed]
  16. P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why, and when," Curr. Opin. Pharma. 4, 504-512 (2004).
    [CrossRef] [PubMed]
  17. D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003).
    [CrossRef] [PubMed]
  18. R. Kopp, T. Schwerte, and B. Pelster, "Cardiac performance in the zebrafish breakdance mutant" J. Exp. Biol. 208, 2123-2134 (2005).
    [CrossRef] [PubMed]
  19. D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

2007

2006

2005

2004

P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why, and when," Curr. Opin. Pharma. 4, 504-512 (2004).
[CrossRef] [PubMed]

2003

2000

Adler, D. C.

Belding, J.

Bigelow, C. E.

Bouma, B.

Bouma, B. E.

Cable, A. E.

Cense, B.

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[CrossRef] [PubMed]

Chen, Z. P.

Davé, D. P.

de Boer, J.

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

de Boer, J. F.

Ekker, S.C

A. Nasevicius and S.C Ekker, "Effective targeted gene �??knockdown�?? in zebrafish," Nature Genetics 26, 216-220 (2000).
[CrossRef] [PubMed]

Ferguson, R. D.

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377.
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum.submitted.

Ferrante, A. A.

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377.
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

Fujimoto, J. G.

Gargesha, M.

Goldsmith, P.

P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why, and when," Curr. Opin. Pharma. 4, 504-512 (2004).
[CrossRef] [PubMed]

Hammer, D. X.

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377.
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum.submitted.

He, Y.

Huang, D.

Huber, R.

Iftimia, N. V.

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377.
[CrossRef] [PubMed]

N. V. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum.submitted.

Jenkins, M. W.

Jiang, J. Y.

Kopp, R.

R. Kopp, T. Schwerte, and B. Pelster, "Cardiac performance in the zebrafish breakdance mutant" J. Exp. Biol. 208, 2123-2134 (2005).
[CrossRef] [PubMed]

Lindmo, T.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, "Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography," Proc. SPIE 6079,607925 (2006).
[CrossRef]

Liu, G.

MacRae, C. A.

D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003).
[CrossRef] [PubMed]

Mariampillai, A.

Milan, D. J.

D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003).
[CrossRef] [PubMed]

Milner, T. E.

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-3931.
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

Munce, N. R.

Nasevicius, A.

A. Nasevicius and S.C Ekker, "Effective targeted gene �??knockdown�?? in zebrafish," Nature Genetics 26, 216-220 (2000).
[CrossRef] [PubMed]

Nassif, N.

Nelson, J. S.

Park, B.

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[CrossRef] [PubMed]

Pedersen, C. J.

Pelster, B.

R. Kopp, T. Schwerte, and B. Pelster, "Cardiac performance in the zebrafish breakdance mutant" J. Exp. Biol. 208, 2123-2134 (2005).
[CrossRef] [PubMed]

Peterson, R. T.

D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003).
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

Peterson, T. A.

D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003).
[CrossRef] [PubMed]

Piao, D.

Pierce, M. C.

Proskurin, S. G.

Randall, C.

Rollins, A. M.

Rosen, D. I.

Rothenberg, F.

Røyset, A.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, "Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography," Proc. SPIE 6079,607925 (2006).
[CrossRef]

Ruskin, J. N.

D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003).
[CrossRef] [PubMed]

Saxer, C.

Schwerte, T.

R. Kopp, T. Schwerte, and B. Pelster, "Cardiac performance in the zebrafish breakdance mutant" J. Exp. Biol. 208, 2123-2134 (2005).
[CrossRef] [PubMed]

Shure, M. A.

Stabo-Eeg, F.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, "Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography," Proc. SPIE 6079,607925 (2006).
[CrossRef]

Standish, B. A.

Støren, T.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, "Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography," Proc. SPIE 6079,607925 (2006).
[CrossRef]

Tearney, G.

Tearney, G. J.

Ustun, T. E.

Vitkin, I. A.

Vu, D.

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377.
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

Wang, R. K.

Watanabe, M.

White, B. R.

Wilson, D. L.

Xiang, S. H.

Yang, V. X. D.

Yun, S.

Zhao, Y. H.

Zhu, Q.

Appl. Opt.

Cardiovascular Imaging

D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

Circulation

D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003).
[CrossRef] [PubMed]

Curr. Opin. Pharma.

P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why, and when," Curr. Opin. Pharma. 4, 504-512 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

N. V. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

J. Exp. Biol.

R. Kopp, T. Schwerte, and B. Pelster, "Cardiac performance in the zebrafish breakdance mutant" J. Exp. Biol. 208, 2123-2134 (2005).
[CrossRef] [PubMed]

Nature Genetics

A. Nasevicius and S.C Ekker, "Effective targeted gene �??knockdown�?? in zebrafish," Nature Genetics 26, 216-220 (2000).
[CrossRef] [PubMed]

Opt. Express

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-3931.
[CrossRef] [PubMed]

N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377.
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-1638 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1627.
[CrossRef] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, "Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser," Opt. Express 15, 6251-6267 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-6251.
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, "Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography," Proc. SPIE 6079,607925 (2006).
[CrossRef]

Rev. Sci. Instrum.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum.submitted.

Supplementary Material (6)

» Media 1: MOV (4956 KB)     
» Media 2: MOV (2812 KB)     
» Media 3: MOV (4350 KB)     
» Media 4: MOV (3248 KB)     
» Media 5: MOV (1087 KB)     
» Media 6: MOV (1040 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Dual-beam approach for measurements on zebrafish (side view). All vectors and angles are in a sagittal plane bisecting the fish at the location of the dorsal aorta.

Fig. 2.
Fig. 2.

Schematic of the dual-beam system.

Fig. 3.
Fig. 3.

Photograph of the dual-beam system. (a) Side view. (b) Top view.

Fig. 4.
Fig. 4.

Front panel of the acquisition software. OCT B-scan is across the tail just below the swim bladder. Arrow in the CCD image indicates position of the OCT line. (Aspect ratio of the scan is not 1.)

Fig. 5.
Fig. 5.

System calibration. (a) Knife-edge measurements through the beam waists. One channel is shifted laterally for better visualization. (b) Lateral position of beam center in the axial dimension measured with knife-edge. (c) Depth attenuation measured with reflector.

Fig. 6.
Fig. 6.

Doppler flow calibration using diluted milk in a 0.5-mm deep flow cell. (a) Absolute velocity profiles of flow in the cell. (b) Average depth profiles across the image. Parabolic flow is clearly evident. (c) Comparison of set velocity to measured average velocity. Phase wrapping occurred above ~30 mm/s and is clearly visible at 69.2 mm/s. The beams were not scanned and were placed ≥1 mm from the cell wall.

Fig. 7.
Fig. 7.

(Media 1) Fly-through video of the entire fish. (a) Ventral view (left panel of video). (b) Axial view (right panel of video). The horizontal line in (a) indicates the cross-section in (b) and the horizontal line in (b) indicates the cross-section in (a). Scale bar=100 µm. T: tail, SB: swim bladder, PF: pectoral fin, E: eye, PC: pericardial cavity. The raw video was acquired at 60 fps.

Fig. 8.
Fig. 8.

(Media 2) Fly-through video of the head and upper body of fish. (a) Ventral view. (b) Sagittal view. Scale bar=100 µm. The raw video was acquired at 15 fps. M: mouth, R: retina, O: otic capsule, SB: swim bladder.

Fig. 9.
Fig. 9.

(Media 3) Fly-through video of the heart. (a) Ventral view. (b) Axial view. Scale bar=100 µm. The raw video was acquired at 72 fps.

Fig. 10.
Fig. 10.

(Media 4) Fly-through video of the notochord. (a) Ventral view. (b) Sagittal view. Scale bar=100 µm. The raw video was acquired at 10 fps.

Fig. 11.
Fig. 11.

(Media 5) Axial view of zebrafish heart. (a), (b) Channel 1 and 2 intensity images; (c), (d) Channel 1 and 2 phase map; (e) Absolute velocity map. Scale bar=100 µm. A: atrium, V: ventrical.

Fig. 12.
Fig. 12.

(Media 6) Sagittal view of zebrafish heart. (a) Channel 1 intensity image, (b) Channel 1 phase image, (c) Absolute velocity map. Scale bar=100 µm. VA: ventral aorta.

Metrics