Abstract

A full time-resolved scheme that has been previously applied in diffuse optical tomography is extended to time-domain fluorescence diffuse optical tomography regime, based on a finite-element-finite-time-difference photon diffusion modeling and a Newton-Raphson inversion framework. The merits of using full time-resolved data are twofold: it helps evaluate the intrinsic performance of time-domain mode for improvement of image quality and set up a valuable reference to the assessment of computationally efficient featured-data-based algorithms, and provides a self-normalized implementation to preclude the necessity of the scaling-factor calibration and spectroscopic-feature assessments of the system as well as to overcome the adversity of system instability. We validate the proposed methodology using simulated data, and evaluate its performances of simultaneous recovery of the fluorescent yield and lifetime as well as its superiority to the featured-data one in the fidelity of image reconstruction.

© 2008 Optical Society of America

PDF Article
OSA Recommended Articles
A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography

Feng Gao, Huijuan Zhao, Yukari Tanikawa, and Yukio Yamada
Opt. Express 14(16) 7109-7124 (2006)

Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors

Limin Zhang, Feng Gao, Huiyuan He, and Huijuan Zhao
Opt. Express 16(10) 7214-7223 (2008)

Total light approach of time-domain fluorescence diffuse optical tomography

Andhi Marjono, Akira Yano, Shinpei Okawa, Feng Gao, and Yukio Yamada
Opt. Express 16(19) 15268-15285 (2008)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent,” Curr. Opin. Chem. Biol. 6, 642–650 (2002).
    [Crossref] [PubMed]
  2. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas DA, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003).
    [Crossref] [PubMed]
  3. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
    [Crossref] [PubMed]
  4. V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotech. 23, 313–320 (2005).
    [Crossref]
  5. S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13–R48 (2004).
    [Crossref] [PubMed]
  6. X. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 139847–9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9847.
    [Crossref] [PubMed]
  7. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time-resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12255.
    [Crossref] [PubMed]
  8. S. Lam, F. Lesage, and X. Intes X, “Time-domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2263.
    [Crossref] [PubMed]
  9. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
    [Crossref] [PubMed]
  10. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation,” Appl. Opt. 37, 5337–5343 (1998).
    [Crossref]
  11. A. D. Klose, V. Ntziachristos, and A. D. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
    [Crossref]
  12. J. Lee and E. M. Sevick-Muraca, “Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths,” J. Opt. Soc. Am. A 19, 759–771 (2002).
    [Crossref]
  13. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24, 137–154 (2005).
    [Crossref] [PubMed]
  14. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data,” Appl. Opt. 46, 7384–7391 (2007).
    [Crossref] [PubMed]
  15. S. V. Patwardhan and J. P. Culver, “Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier,” J. Biomed. Opt. 13, 011009 (2008).
    [Crossref] [PubMed]
  16. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
    [Crossref] [PubMed]
  17. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
    [Crossref] [PubMed]
  18. T. J. Farrell and M. S. Patterson, “Diffusion modeling of fluorescence in tissue,” in Handbook of Biomedical Fluorescence, Mycek MA and Pogue BW eds., Marcel Dekker, New York (2003).
  19. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
    [Crossref]
  20. W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic Press, New York1979).
  21. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [Crossref] [PubMed]
  22. S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [Crossref] [PubMed]
  23. K. Licha, “Contrast agents for optical imaging,” Topics in Current Chemistry 222, 1–29 (2002).
    [Crossref]
  24. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods Volume 1 5th ed., (Elsevier Pte Ltd., Singapore2004).
  25. H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, Art. No. 062107 (2007).
    [Crossref] [PubMed]
  26. W. Becker, Advanced time-correlated single photon counting techniques (Springer-Verlag, Berlin2005).
  27. D. A. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 253–270 (2001).
    [Crossref]
  28. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, “Source-detector calibration in threedimensional Baysian optical diffusion tomography,” J. Opt. Soc. Am. A 19, 1983–1993 (2002).
    [Crossref]
  29. T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, “Computational calibration method for optical tomography,” Appl. Opt. 44, 1879–1888 (2005).
    [Crossref] [PubMed]
  30. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
    [Crossref] [PubMed]
  31. H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 43, 1905–1916 (2005).
    [Crossref]
  32. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [Crossref]
  33. F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
    [Crossref]
  34. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
    [Crossref] [PubMed]
  35. F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
    [Crossref]
  36. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
    [Crossref]

2008 (2)

S. V. Patwardhan and J. P. Culver, “Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier,” J. Biomed. Opt. 13, 011009 (2008).
[Crossref] [PubMed]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[Crossref] [PubMed]

2007 (2)

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, Art. No. 062107 (2007).
[Crossref] [PubMed]

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data,” Appl. Opt. 46, 7384–7391 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (9)

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
[Crossref]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[Crossref] [PubMed]

T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, “Computational calibration method for optical tomography,” Appl. Opt. 44, 1879–1888 (2005).
[Crossref] [PubMed]

S. Lam, F. Lesage, and X. Intes X, “Time-domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263–2275 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2263.
[Crossref] [PubMed]

X. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 139847–9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9847.
[Crossref] [PubMed]

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotech. 23, 313–320 (2005).
[Crossref]

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24, 137–154 (2005).
[Crossref] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 43, 1905–1916 (2005).
[Crossref]

2004 (2)

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13–R48 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (6)

2001 (1)

D. A. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 253–270 (2001).
[Crossref]

2000 (4)

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[Crossref]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[Crossref]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[Crossref]

1998 (1)

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Achilefu, S.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Arridge, S. R.

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data,” Appl. Opt. 46, 7384–7391 (2007).
[Crossref] [PubMed]

T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, “Computational calibration method for optical tomography,” Appl. Opt. 44, 1879–1888 (2005).
[Crossref] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

D. A. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 253–270 (2001).
[Crossref]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[Crossref]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Bacskai, B. J.

Becker, W.

W. Becker, Advanced time-correlated single photon counting techniques (Springer-Verlag, Berlin2005).

Boas, D. A.

Bouman, C. A.

Boverman, G.

Brambilla, M.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[Crossref] [PubMed]

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

Bugaj, J. E.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Cherry, S. R.

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13–R48 (2004).
[Crossref] [PubMed]

Cong, X.

Cubeddu, R.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[Crossref] [PubMed]

Culver, J. P.

S. V. Patwardhan and J. P. Culver, “Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier,” J. Biomed. Opt. 13, 011009 (2008).
[Crossref] [PubMed]

DA, D. A. Boas

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[Crossref]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Dorshow, P. R.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Egan, W. G.

W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic Press, New York1979).

Elson, D. S.

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Farrell, T. J.

T. J. Farrell and M. S. Patterson, “Diffusion modeling of fluorescence in tissue,” in Handbook of Biomedical Fluorescence, Mycek MA and Pogue BW eds., Marcel Dekker, New York (2003).

French, P. M. W.

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[Crossref]

Gao, F.

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, Art. No. 062107 (2007).
[Crossref] [PubMed]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[Crossref] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 43, 1905–1916 (2005).
[Crossref]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
[Crossref]

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[Crossref] [PubMed]

F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[Crossref]

Gaudette, T.

D. A. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 253–270 (2001).
[Crossref]

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Gibson, A. P.

Godavarty, A.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24, 137–154 (2005).
[Crossref] [PubMed]

Gurfinkel, M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent,” Curr. Opin. Chem. Biol. 6, 642–650 (2002).
[Crossref] [PubMed]

Hebden, J. C.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[Crossref]

Hielscher, A. D.

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]

Hilgeman, T. W.

W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic Press, New York1979).

Hillman, E. M. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[Crossref]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Homma, K.

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 43, 1905–1916 (2005).
[Crossref]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
[Crossref]

Houston, J. P.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent,” Curr. Opin. Chem. Biol. 6, 642–650 (2002).
[Crossref] [PubMed]

Jiang, H.

Kaipio, A. P.

Klose, A. D.

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]

Kolehmainen, V.

Kumar, A. T. N.

Lam, S.

Lee, J.

Lesage, F.

Licha, K.

K. Licha, “Contrast agents for optical imaging,” Topics in Current Chemistry 222, 1–29 (2002).
[Crossref]

McGinty, J.

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Millane, R. P.

Milstein, A. B.

Neil, M. A. A.

Ntziachiristos, V.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotech. 23, 313–320 (2005).
[Crossref]

Ntziachristos, V.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[Crossref] [PubMed]

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

Oh, S.

Patterson, M. S.

T. J. Farrell and M. S. Patterson, “Diffusion modeling of fluorescence in tissue,” in Handbook of Biomedical Fluorescence, Mycek MA and Pogue BW eds., Marcel Dekker, New York (2003).

Patwardhan, S. V.

S. V. Patwardhan and J. P. Culver, “Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier,” J. Biomed. Opt. 13, 011009 (2008).
[Crossref] [PubMed]

Pifferi, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[Crossref] [PubMed]

Poulet, P.

Rajapopalan, R.

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Raymond, S. B.

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[Crossref] [PubMed]

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotech. 23, 313–320 (2005).
[Crossref]

Roy, R.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24, 137–154 (2005).
[Crossref] [PubMed]

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[Crossref]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

Schweiger, M.

T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and A. P. Kaipio, “Computational calibration method for optical tomography,” Appl. Opt. 44, 1879–1888 (2005).
[Crossref] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24, 137–154 (2005).
[Crossref] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent,” Curr. Opin. Chem. Biol. 6, 642–650 (2002).
[Crossref] [PubMed]

J. Lee and E. M. Sevick-Muraca, “Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths,” J. Opt. Soc. Am. A 19, 759–771 (2002).
[Crossref]

Soloviev, V. Y.

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[Crossref] [PubMed]

Spinelli, L.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[Crossref] [PubMed]

Tahir, K. B.

Tanikawa, Y.

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, Art. No. 062107 (2007).
[Crossref] [PubMed]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[Crossref] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 43, 1905–1916 (2005).
[Crossref]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
[Crossref]

Tarvainen, T.

Taylor, R. L.

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods Volume 1 5th ed., (Elsevier Pte Ltd., Singapore2004).

Thompson, A. B.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24, 137–154 (2005).
[Crossref] [PubMed]

Torricelli, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[Crossref] [PubMed]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

Vanne, A.

Vauhkonen, M.

Wang, G.

Wang, L. H. V.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotech. 23, 313–320 (2005).
[Crossref]

Webb, K. J.

Weissleder, R.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotech. 23, 313–320 (2005).
[Crossref]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

X, X. Intes

Yamada, Y.

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, Art. No. 062107 (2007).
[Crossref] [PubMed]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[Crossref] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 43, 1905–1916 (2005).
[Crossref]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
[Crossref]

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[Crossref] [PubMed]

F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from full three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[Crossref]

Yusof, R.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Zhang, Q.

Zhao, H.

Zhao, H. J.

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, Art. No. 062107 (2007).
[Crossref] [PubMed]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7109.
[Crossref] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 43, 1905–1916 (2005).
[Crossref]

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
[Crossref]

Zienkiewicz, O. C.

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods Volume 1 5th ed., (Elsevier Pte Ltd., Singapore2004).

Appl. Opt. (7)

Curr. Opin. Chem. Biol. (1)

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent,” Curr. Opin. Chem. Biol. 6, 642–650 (2002).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (2)

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “Tomographic fluorescence imaging in tissue phantom: A novel reconstruction algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24, 137–154 (2005).
[Crossref] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005).
[Crossref] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[Crossref]

Invest. Radiol. (1)

S. Achilefu, P. R. Dorshow, J. E. Bugaj, and R. Rajapopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, Art. No. 062107 (2007).
[Crossref] [PubMed]

S. V. Patwardhan and J. P. Culver, “Quantitative diffuse optical tomography for small animals using an unltrafast gated image intensifier,” J. Biomed. Opt. 13, 011009 (2008).
[Crossref] [PubMed]

J. Comput. Phys. (1)

A. D. Klose, V. Ntziachristos, and A. D. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Nat. Biotech. (1)

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotech. 23, 313–320 (2005).
[Crossref]

Nat. Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Quantum Electron. (1)

F. Gao, H. J. Zhao, Y. Tanikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography - a comparison between featured-data and full time-resolved schemes,” Opt. Quantum Electron. 37, 1287–1304 (2005).
[Crossref]

Phys. Med. Biol. (2)

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13–R48 (2004).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[Crossref]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[Crossref] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[Crossref]

Topics in Current Chemistry (1)

K. Licha, “Contrast agents for optical imaging,” Topics in Current Chemistry 222, 1–29 (2002).
[Crossref]

Other (4)

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods Volume 1 5th ed., (Elsevier Pte Ltd., Singapore2004).

W. Becker, Advanced time-correlated single photon counting techniques (Springer-Verlag, Berlin2005).

T. J. Farrell and M. S. Patterson, “Diffusion modeling of fluorescence in tissue,” in Handbook of Biomedical Fluorescence, Mycek MA and Pogue BW eds., Marcel Dekker, New York (2003).

W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic Press, New York1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics