Abstract

A novel optical sensor for label-free biomolecular binding assay using a one-dimensional photonic crystal in a total-internal-reflection geometry is proposed and demonstrated. The simple configuration provides a narrow optical resonance to enable sensitive measurements of molecular binding, and at the same time employs an open interface to enable real-time measurements of binding dynamics. Ultrathin aminopropyltriethoxysilane/ glutaraldehyde films adsorbed on the interface were detected by measuring the spectral shift of the photonic crystal resonance and the intensity ratio change in a differential reflectance measurement. A detection limit of 6×10−5 nm for molecular layer thickness was obtained, which corresponds to a detection limit for analyte adsorption of 0.06 pg/mm2 or a refractive index resolution of 3×10−8 RIU; this represents a significant improvement relative to state-of-the-art surface-plasmon-resonance-based systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 462-493 (2008).
    [CrossRef] [PubMed]
  2. X. D. Hoaa, A.G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
    [CrossRef]
  3. J. Homola, "Present and future of surface plasmon resonance biosensors,"Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  4. D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
    [CrossRef] [PubMed]
  5. D. O�??Shannessy, "Determination of Kinetic Rate and Equilibrium Binding Constants for Macromolecular Interactions: A Critique of the Surface Plasmon Resonance Literature," Curr. Opin. Biotechnol. 5, 65-71 (1994).
    [CrossRef] [PubMed]
  6. R. Horvath, N. Skivesen, H. C. Pedersen, "Measurement of guided light-mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett. 84, 4044-4046 (2004).
    [CrossRef]
  7. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  8. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
    [CrossRef]
  9. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  10. V. S. Ilchenko and M. L. Gorodetskii, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser Phys. 2, 1004-1009 (1992).
  11. V. Mulloni, and L. Pavesi, "Porous silicon microcavities as optical chemical sensors," Appl. Phys. Lett. 76, 2523-2525 (2000).
    [CrossRef]
  12. H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
    [CrossRef]
  13. W. M. Robertson and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett. 74, 1800-1802 (1999).
    [CrossRef]
  14. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, "Photonic crystal sensor based on surface waves for thin-film characterization," Opt. Lett. 27, 646-648 (2002).
    [CrossRef]
  15. B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007).
    [CrossRef]
  16. M. Shin and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
    [CrossRef]
  17. V. N. Konopsky and E. V. Alieva, "Photonic crystal surface waves for optical biosensors," Anal. Chem. 79, 4729-4735 (2007).
    [CrossRef] [PubMed]
  18. J. Y. Ye and M. Ishikawa, "Light enhancement method and device, and their applications in fluorescence detection," Patent: JP 2001-242083.
  19. H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
    [CrossRef]
  20. R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
    [CrossRef]
  21. O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007).
    [CrossRef]
  22. B. Ran, and S. G. Lipson, "Comparison between sensitivities of phase and intensity detection in surface plasmon resonance," Opt. Express 14, 5641-5650 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5641.
    [CrossRef] [PubMed]
  23. X. B. Liu, Z. Q. Cao, Q. S. Shen, and S. Huang, "Optical Sensor Based on Fabry-Perot Resonance Modes," Appl. Opt. 42, 7137-7140 (2003).
    [CrossRef]
  24. J. S. Shurnaker-Parry, and C. T. Campbell, "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy," Anal. Chem. 76, 907-917 (2004).
    [CrossRef]
  25. D. G. Myszka, "Improving biosensor analysis," J. Mol. Recognit.  12, 279-284 (1999).
    [CrossRef] [PubMed]
  26. Z. Knittl, Optics of Thin films (An Optical Multilayer Theory) (Wiley, London 1976).
  27. G. T. Hermanson, Biocojugate Techniques Academic (Press, New York 1996).
  28. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
    [CrossRef]
  29. C. E. Stewart, I. R. Hooper, and J. R. Sambles, "Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical," J. Phys. D: Appl. Phys. 41, 105408 (2008).
    [CrossRef]

2008 (2)

J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

C. E. Stewart, I. R. Hooper, and J. R. Sambles, "Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical," J. Phys. D: Appl. Phys. 41, 105408 (2008).
[CrossRef]

2007 (5)

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007).
[CrossRef]

X. D. Hoaa, A.G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007).
[CrossRef]

V. N. Konopsky and E. V. Alieva, "Photonic crystal surface waves for optical biosensors," Anal. Chem. 79, 4729-4735 (2007).
[CrossRef] [PubMed]

2006 (3)

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

B. Ran, and S. G. Lipson, "Comparison between sensitivities of phase and intensity detection in surface plasmon resonance," Opt. Express 14, 5641-5650 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5641.
[CrossRef] [PubMed]

2005 (1)

M. Shin and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

2004 (2)

R. Horvath, N. Skivesen, H. C. Pedersen, "Measurement of guided light-mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett. 84, 4044-4046 (2004).
[CrossRef]

J. S. Shurnaker-Parry, and C. T. Campbell, "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy," Anal. Chem. 76, 907-917 (2004).
[CrossRef]

2003 (2)

X. B. Liu, Z. Q. Cao, Q. S. Shen, and S. Huang, "Optical Sensor Based on Fabry-Perot Resonance Modes," Appl. Opt. 42, 7137-7140 (2003).
[CrossRef]

J. Homola, "Present and future of surface plasmon resonance biosensors,"Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

2002 (3)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
[CrossRef]

F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, "Photonic crystal sensor based on surface waves for thin-film characterization," Opt. Lett. 27, 646-648 (2002).
[CrossRef]

2000 (1)

V. Mulloni, and L. Pavesi, "Porous silicon microcavities as optical chemical sensors," Appl. Phys. Lett. 76, 2523-2525 (2000).
[CrossRef]

1999 (2)

W. M. Robertson and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

D. G. Myszka, "Improving biosensor analysis," J. Mol. Recognit.  12, 279-284 (1999).
[CrossRef] [PubMed]

1998 (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
[CrossRef] [PubMed]

1994 (2)

D. O�??Shannessy, "Determination of Kinetic Rate and Equilibrium Binding Constants for Macromolecular Interactions: A Critique of the Surface Plasmon Resonance Literature," Curr. Opin. Biotechnol. 5, 65-71 (1994).
[CrossRef] [PubMed]

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

1992 (1)

V. S. Ilchenko and M. L. Gorodetskii, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser Phys. 2, 1004-1009 (1992).

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, "Photonic crystal surface waves for optical biosensors," Anal. Chem. 79, 4729-4735 (2007).
[CrossRef] [PubMed]

Arakawa, M.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Aspect, A.

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Campbell, C. T.

J. S. Shurnaker-Parry, and C. T. Campbell, "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy," Anal. Chem. 76, 907-917 (2004).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Cao, Z. Q.

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Dembo, M.

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
[CrossRef] [PubMed]

Fan, X.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Fauchet, P. M.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Gaspar-Armenta, J.

Goldstein, B.

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
[CrossRef] [PubMed]

Gorodetskii, M. L.

V. S. Ilchenko and M. L. Gorodetskii, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser Phys. 2, 1004-1009 (1992).

Hattori, T.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
[CrossRef]

He, X.

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
[CrossRef] [PubMed]

Hoaa, X. D.

X. D. Hoaa, A.G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Homola, J.

J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

J. Homola, "Present and future of surface plasmon resonance biosensors,"Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Hooper, I. R.

C. E. Stewart, I. R. Hooper, and J. R. Sambles, "Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical," J. Phys. D: Appl. Phys. 41, 105408 (2008).
[CrossRef]

Horvath, R.

R. Horvath, N. Skivesen, H. C. Pedersen, "Measurement of guided light-mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett. 84, 4044-4046 (2004).
[CrossRef]

Huang, S.

Ilchenko, V. S.

V. S. Ilchenko and M. L. Gorodetskii, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser Phys. 2, 1004-1009 (1992).

Inouye, H.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
[CrossRef]

Johnson, N. M.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007).
[CrossRef]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Kaiser, R.

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Kiesel, P.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007).
[CrossRef]

Kirk, A.G.

X. D. Hoaa, A.G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, "Photonic crystal surface waves for optical biosensors," Anal. Chem. 79, 4729-4735 (2007).
[CrossRef] [PubMed]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Leipold, D.

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Levy, Y.

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Lipson, S. G.

Liu, X. B.

Lopez-Rios, T.

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

May, M. S.

W. M. Robertson and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

Mlynek, J.

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Mohta, S.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007).
[CrossRef]

Morton, T. A.

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
[CrossRef] [PubMed]

Mulloni, V.

V. Mulloni, and L. Pavesi, "Porous silicon microcavities as optical chemical sensors," Appl. Phys. Lett. 76, 2523-2525 (2000).
[CrossRef]

Myszka, D. G.

D. G. Myszka, "Improving biosensor analysis," J. Mol. Recognit.  12, 279-284 (1999).
[CrossRef] [PubMed]

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
[CrossRef] [PubMed]

Nakatsuka, H.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
[CrossRef]

Nurligareev, D. Kh.

B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007).
[CrossRef]

O???Shannessy, D.

D. O�??Shannessy, "Determination of Kinetic Rate and Equilibrium Binding Constants for Macromolecular Interactions: A Critique of the Surface Plasmon Resonance Literature," Curr. Opin. Biotechnol. 5, 65-71 (1994).
[CrossRef] [PubMed]

Ouyang, H.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

Oveys, H.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Pavesi, L.

V. Mulloni, and L. Pavesi, "Porous silicon microcavities as optical chemical sensors," Appl. Phys. Lett. 76, 2523-2525 (2000).
[CrossRef]

Pedersen, H. C.

R. Horvath, N. Skivesen, H. C. Pedersen, "Measurement of guided light-mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett. 84, 4044-4046 (2004).
[CrossRef]

Ramos-Mendieta, F.

Ran, B.

Regalado, L. E.

Robertson, W. M.

M. Shin and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

W. M. Robertson and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

Sambles, J. R.

C. E. Stewart, I. R. Hooper, and J. R. Sambles, "Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical," J. Phys. D: Appl. Phys. 41, 105408 (2008).
[CrossRef]

Schmidt, O.

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007).
[CrossRef]

Seifert, W.

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Shen, Q. S.

Shin, M.

M. Shin and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

Shurnaker-Parry, J. S.

J. S. Shurnaker-Parry, and C. T. Campbell, "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy," Anal. Chem. 76, 907-917 (2004).
[CrossRef]

Skivesen, N.

R. Horvath, N. Skivesen, H. C. Pedersen, "Measurement of guided light-mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett. 84, 4044-4046 (2004).
[CrossRef]

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Stewart, C. E.

C. E. Stewart, I. R. Hooper, and J. R. Sambles, "Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical," J. Phys. D: Appl. Phys. 41, 105408 (2008).
[CrossRef]

Striemer, C. C.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

Svetikov, V. V.

B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007).
[CrossRef]

Sychugov, V.A.

B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007).
[CrossRef]

Tabrizian, M.

X. D. Hoaa, A.G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Usievich, B. A.

B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Vansteenkiste, N.

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Villa, F.

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

White, I. M.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Ye, J. Y.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
[CrossRef]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Zhang, J.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, "Present and future of surface plasmon resonance biosensors,"Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Anal. Chem. (2)

V. N. Konopsky and E. V. Alieva, "Photonic crystal surface waves for optical biosensors," Anal. Chem. 79, 4729-4735 (2007).
[CrossRef] [PubMed]

J. S. Shurnaker-Parry, and C. T. Campbell, "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy," Anal. Chem. 76, 907-917 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

V. Mulloni, and L. Pavesi, "Porous silicon microcavities as optical chemical sensors," Appl. Phys. Lett. 76, 2523-2525 (2000).
[CrossRef]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006).
[CrossRef]

W. M. Robertson and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

R. Horvath, N. Skivesen, H. C. Pedersen, "Measurement of guided light-mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett. 84, 4044-4046 (2004).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Biophys. J. (1)

D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

X. D. Hoaa, A.G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Chem. Rev. (1)

J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

D. O�??Shannessy, "Determination of Kinetic Rate and Equilibrium Binding Constants for Macromolecular Interactions: A Critique of the Surface Plasmon Resonance Literature," Curr. Opin. Biotechnol. 5, 65-71 (1994).
[CrossRef] [PubMed]

IEEE J. Quantum. Electron. (1)

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002).
[CrossRef]

J. Mol. Recognit. (1)

D. G. Myszka, "Improving biosensor analysis," J. Mol. Recognit.  12, 279-284 (1999).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys. (1)

C. E. Stewart, I. R. Hooper, and J. R. Sambles, "Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical," J. Phys. D: Appl. Phys. 41, 105408 (2008).
[CrossRef]

Langmuir (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Laser Phys. (1)

V. S. Ilchenko and M. L. Gorodetskii, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser Phys. 2, 1004-1009 (1992).

Opt. Commun. (1)

R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Quantum. Electron. (1)

B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B (1)

M. Shin and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

Other (3)

J. Y. Ye and M. Ishikawa, "Light enhancement method and device, and their applications in fluorescence detection," Patent: JP 2001-242083.

Z. Knittl, Optics of Thin films (An Optical Multilayer Theory) (Wiley, London 1976).

G. T. Hermanson, Biocojugate Techniques Academic (Press, New York 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Principle of a PC-TIR sensor. (a), A sample sandwiched by two pieces of PC structures. We conceptually split this structure from the middle layer into two pieces. (b), Use only one piece of the PC structure in a TIR geometry. Owing to the TIR, conceptually an imaginary PC structure exists and forms a microcavity as if there would be two pieces of PC structures.(c),This PC-TIR sensor offers a unique sensing interface open for biomolecular assay.

Fig. 2.
Fig. 2.

Experimental setup for spectral detection and differential reflectance measurements. OL1-OL5: objective lenses, PH1-PH2: pinhole, PL: polarizer, NPBS: Non-polarizing beam splitter, M1-M9: reflecting mirrors, D1-D2: photodiode detectors.

Fig. 3.
Fig. 3.

(a), PC-TIR sensor structure. (b), Experimental, simulated and Lorentz fitting PC-TIR reflectance spectra.

Fig. 4.
Fig. 4.

(a), Resonance dip wavelength shifts with the binding of adlayer. (b), Reflectance ratios at 632.8 nm from differential reflectance measurements for a PC-TIR sensor without treatments (blue) and with APTES monolayer (red).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n s sin θ s = n a sin θ a = n b sin θ b = n x sin θ x
n a d a cos θ a = n b d b cos θ b = λ R 4
2 2 π λ R n x d x cos θ x + α = ( 2 m + 1 ) π ( m = 0,1,2,… )
2 2 π λ R ( n x d x cos θ x + n ad d ad cos θ ad ) + α = ( 2 m + 1 ) π ( m = 0,1,2,… )
S = I r d ad = I r λ R λ R λ ad = O s B s
I r = I 0 [ 1 1 R min 1 + ( λ R λ 0 Δ λ 2 ) 2 ]
O s , max = ( I r λ R ) max = ± 1.3 I 0 ( 1 R min ) Δ λ
B s = 4 π n ad cos θ ad ( 2 m + 1 ) π α
S max = ± 5.2 π n ad cos θ ad [ ( 2 m + 1 ) π α ] I 0 ( 1 R min ) Δ λ

Metrics