Abstract

By spectral phase shaping of both the pump and probe pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy we demonstrate the extraction of the frequencies, bandwidths and relative cross sections of vibrational lines. We employ a tunable broadband Ti:Sapphire laser synchronized to a ps-Nd:YVO mode locked laser. A high resolution spectral phase shaper allows for spectroscopy with a precision better than 1 cm-1 in the high frequency region around 3000 cm-1. We also demonstrate how new spectral phase shaping strategies can amplify the resonant features of isolated vibrations to such an extent that spectroscopy and microscopy can be done at high resolution, on the integrated spectral response without the need for a spectrograph.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker and R. W. Terhune, "Study of Optical Effects due to an induced Polarization Third Order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
    [CrossRef]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  3. M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350-352 (1982).
    [CrossRef] [PubMed]
  4. J. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
    [CrossRef]
  5. E. O. Potma, C. L. Evans, and X. S. Xie, "Heterodyne Coherent Anti-Stokes Raman Scattering (CARS) Imaging," Opt. Lett. 31, 241-243 (2006).
    [CrossRef] [PubMed]
  6. M. Hashimoto, T. Araki, and S. Kawata, "Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration," Opt. Lett. 25, 1768-1770 (2000).
    [CrossRef]
  7. M. Müller and J. M. Schins, "Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy," J. Phys. Chem B. 106, 3715-3723 (2002).
    [CrossRef]
  8. B. von Vacano, L. Meyer, and M. Motzkus, "Rapid Polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38, 916-926 (2007).
    [CrossRef]
  9. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004).
    [CrossRef] [PubMed]
  10. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, "Ultrabroadband (>2000 cm-1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source," Opt. Lett. 32, 3050-3052 (2007).
    [CrossRef] [PubMed]
  11. S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
    [CrossRef]
  12. J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, "Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy," J. Raman Spectrosc. 37, 697-704 (2006).
    [CrossRef]
  13. J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, "Application of feedback-controlled pulse shaping for control of CARS spectra: The role of phase and amplitude modulation," J. Raman Spectrosc. 38, 1006-1021 (2007).
    [CrossRef]
  14. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature,  418, 512-514 (2002).
    [CrossRef] [PubMed]
  15. D. Oron, N. Dudovich, and Y. Silberberg, "Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902-4 (2003).
    [CrossRef] [PubMed]
  16. T. Polack, D. Oron, and Y. Silberberg, "Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse," Chem. Phys. 318, 163-169 (2005).
    [CrossRef]
  17. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, "Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy," J. Opt. Soc. Am. B 8, 1264-1275 (1991).
    [CrossRef]
  18. S. Lim. A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev A 72, 0418303-4 (2005).
    [CrossRef]
  19. H.-S Tang and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
    [CrossRef]
  20. D. Oron, N. Dudovich, and Y. Silberberg, "All-optical processing in coherent nonlinear spectroscopy," Phys. Rev. A 70, 023415 (2004).
    [CrossRef]
  21. S. Postma, P. van der Walle, H. L. Offerhaus, N. F. van Hulst, "Compact high-resolution spectral phase shaper," Rev. Sci. Instrum. 76, 123105-4 (2005).
    [CrossRef]
  22. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
    [CrossRef]
  23. L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
    [CrossRef]
  24. R. W. Boyd, Nonlinear Optics, second edition (Academic Press, 2003), Chap. 10. "Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering,"
  25. J. Workman Jr., Handbook of Organic Compounds: NIR, IR, Raman and UV-Vis Spectra featuring Polymers and Surfaces, (Academic Press 2001), Vol. 3 IR and Raman Spectra.

2007 (4)

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid Polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, "Application of feedback-controlled pulse shaping for control of CARS spectra: The role of phase and amplitude modulation," J. Raman Spectrosc. 38, 1006-1021 (2007).
[CrossRef]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, "Ultrabroadband (>2000 cm-1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source," Opt. Lett. 32, 3050-3052 (2007).
[CrossRef] [PubMed]

2006 (2)

E. O. Potma, C. L. Evans, and X. S. Xie, "Heterodyne Coherent Anti-Stokes Raman Scattering (CARS) Imaging," Opt. Lett. 31, 241-243 (2006).
[CrossRef] [PubMed]

J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, "Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy," J. Raman Spectrosc. 37, 697-704 (2006).
[CrossRef]

2005 (3)

T. Polack, D. Oron, and Y. Silberberg, "Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse," Chem. Phys. 318, 163-169 (2005).
[CrossRef]

S. Postma, P. van der Walle, H. L. Offerhaus, N. F. van Hulst, "Compact high-resolution spectral phase shaper," Rev. Sci. Instrum. 76, 123105-4 (2005).
[CrossRef]

S. Lim. A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev A 72, 0418303-4 (2005).
[CrossRef]

2004 (2)

D. Oron, N. Dudovich, and Y. Silberberg, "All-optical processing in coherent nonlinear spectroscopy," Phys. Rev. A 70, 023415 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004).
[CrossRef] [PubMed]

2003 (2)

H.-S Tang and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902-4 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Müller and J. M. Schins, "Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy," J. Phys. Chem B. 106, 3715-3723 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature,  418, 512-514 (2002).
[CrossRef] [PubMed]

J. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

2001 (1)

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
[CrossRef]

2000 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1997 (1)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
[CrossRef]

1991 (1)

1982 (1)

1965 (1)

P. D. Maker and R. W. Terhune, "Study of Optical Effects due to an induced Polarization Third Order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Araki, T.

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
[CrossRef]

Brixner, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
[CrossRef]

Caster, A. G.

S. Lim. A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev A 72, 0418303-4 (2005).
[CrossRef]

Chen, G.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Cheng, J.

Cicerone, M. T.

Couderc, V.

Ding, L.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, "All-optical processing in coherent nonlinear spectroscopy," Phys. Rev. A 70, 023415 (2004).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902-4 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature,  418, 512-514 (2002).
[CrossRef] [PubMed]

Duncan, M. D.

Evans, C. L.

Gerber, G.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
[CrossRef]

Hamaguchi, H.

Hashimoto, M.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Kano, H.

Kapteyn, H. C.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
[CrossRef]

Kawata, S.

Kee, T. W.

Konradi, J.

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, "Application of feedback-controlled pulse shaping for control of CARS spectra: The role of phase and amplitude modulation," J. Raman Spectrosc. 38, 1006-1021 (2007).
[CrossRef]

J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, "Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy," J. Raman Spectrosc. 37, 697-704 (2006).
[CrossRef]

Leaird, D. E.

Leone, S. R.

S. Lim. A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev A 72, 0418303-4 (2005).
[CrossRef]

Leproux, P.

Lim, S.

S. Lim. A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev A 72, 0418303-4 (2005).
[CrossRef]

Ma, L.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
[CrossRef]

Maker, P. D.

P. D. Maker and R. W. Terhune, "Study of Optical Effects due to an induced Polarization Third Order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Manuccia, T. J.

Materny, A.

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, "Application of feedback-controlled pulse shaping for control of CARS spectra: The role of phase and amplitude modulation," J. Raman Spectrosc. 38, 1006-1021 (2007).
[CrossRef]

J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, "Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy," J. Raman Spectrosc. 37, 697-704 (2006).
[CrossRef]

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid Polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

Motzkus, M.

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid Polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

Müller, M.

M. Müller and J. M. Schins, "Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy," J. Phys. Chem B. 106, 3715-3723 (2002).
[CrossRef]

Murnane, M. M.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
[CrossRef]

Namboodiri, V.

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, "Application of feedback-controlled pulse shaping for control of CARS spectra: The role of phase and amplitude modulation," J. Raman Spectrosc. 38, 1006-1021 (2007).
[CrossRef]

Nelson, K. A.

Offerhaus, H. L.

S. Postma, P. van der Walle, H. L. Offerhaus, N. F. van Hulst, "Compact high-resolution spectral phase shaper," Rev. Sci. Instrum. 76, 123105-4 (2005).
[CrossRef]

Okuno, M.

Oron, D.

T. Polack, D. Oron, and Y. Silberberg, "Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse," Chem. Phys. 318, 163-169 (2005).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "All-optical processing in coherent nonlinear spectroscopy," Phys. Rev. A 70, 023415 (2004).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902-4 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature,  418, 512-514 (2002).
[CrossRef] [PubMed]

Polack, T.

T. Polack, D. Oron, and Y. Silberberg, "Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse," Chem. Phys. 318, 163-169 (2005).
[CrossRef]

Postma, S.

S. Postma, P. van der Walle, H. L. Offerhaus, N. F. van Hulst, "Compact high-resolution spectral phase shaper," Rev. Sci. Instrum. 76, 123105-4 (2005).
[CrossRef]

Potma, E. O.

Reintjes, J.

Scaria, A.

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, "Application of feedback-controlled pulse shaping for control of CARS spectra: The role of phase and amplitude modulation," J. Raman Spectrosc. 38, 1006-1021 (2007).
[CrossRef]

Scaria, A. V.

J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, "Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy," J. Raman Spectrosc. 37, 697-704 (2006).
[CrossRef]

Schins, J. M.

M. Müller and J. M. Schins, "Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy," J. Phys. Chem B. 106, 3715-3723 (2002).
[CrossRef]

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
[CrossRef]

Shelton, R. K.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
[CrossRef]

Silberberg, Y.

T. Polack, D. Oron, and Y. Silberberg, "Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse," Chem. Phys. 318, 163-169 (2005).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "All-optical processing in coherent nonlinear spectroscopy," Phys. Rev. A 70, 023415 (2004).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902-4 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature,  418, 512-514 (2002).
[CrossRef] [PubMed]

Singh, A. K.

J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, "Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy," J. Raman Spectrosc. 37, 697-704 (2006).
[CrossRef]

Strehle, M.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
[CrossRef]

Sun, Z.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Tang, H.-S

Terhune, R. W.

P. D. Maker and R. W. Terhune, "Study of Optical Effects due to an induced Polarization Third Order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

van der Walle, P.

S. Postma, P. van der Walle, H. L. Offerhaus, N. F. van Hulst, "Compact high-resolution spectral phase shaper," Rev. Sci. Instrum. 76, 123105-4 (2005).
[CrossRef]

van Hulst, N. F.

S. Postma, P. van der Walle, H. L. Offerhaus, N. F. van Hulst, "Compact high-resolution spectral phase shaper," Rev. Sci. Instrum. 76, 123105-4 (2005).
[CrossRef]

Volkmer, A.

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid Polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

Wang, Z.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Warren, W. S.

Weiner, A. M.

Wiederrecht, G. P.

Xie, X. S.

Ye, J.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
[CrossRef]

Zhang, L.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Zhang, S.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Zhang, X.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Appl. Phys. B. (1)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B. 65, 779-782 (1997).
[CrossRef]

Chem. Phys. (1)

T. Polack, D. Oron, and Y. Silberberg, "Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse," Chem. Phys. 318, 163-169 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, "Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm," Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem B. (1)

M. Müller and J. M. Schins, "Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy," J. Phys. Chem B. 106, 3715-3723 (2002).
[CrossRef]

J. Raman Spectrosc. (3)

B. von Vacano, L. Meyer, and M. Motzkus, "Rapid Polymer blend imaging with quantitative broadband multiplex CARS microscopy," J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, "Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy," J. Raman Spectrosc. 37, 697-704 (2006).
[CrossRef]

J. Konradi, A. Scaria, V. Namboodiri, and A. Materny, "Application of feedback-controlled pulse shaping for control of CARS spectra: The role of phase and amplitude modulation," J. Raman Spectrosc. 38, 1006-1021 (2007).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature,  418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev A (1)

S. Lim. A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev A 72, 0418303-4 (2005).
[CrossRef]

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, "Study of Optical Effects due to an induced Polarization Third Order in the electric field strength," Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Phys. Rev. A (1)

D. Oron, N. Dudovich, and Y. Silberberg, "All-optical processing in coherent nonlinear spectroscopy," Phys. Rev. A 70, 023415 (2004).
[CrossRef]

Phys. Rev. A. (1)

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A. 64, 021802-4 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, "Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902-4 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. Postma, P. van der Walle, H. L. Offerhaus, N. F. van Hulst, "Compact high-resolution spectral phase shaper," Rev. Sci. Instrum. 76, 123105-4 (2005).
[CrossRef]

Other (2)

R. W. Boyd, Nonlinear Optics, second edition (Academic Press, 2003), Chap. 10. "Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering,"

J. Workman Jr., Handbook of Organic Compounds: NIR, IR, Raman and UV-Vis Spectra featuring Polymers and Surfaces, (Academic Press 2001), Vol. 3 IR and Raman Spectra.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

CARS energy schemes a) Narrowband CARS, b) Multiplex CARS, c) Pump and Stokes broad, d) Pump and probe broad, e) Non-resonant energy scheme.

Fig. 2.
Fig. 2.

Layout. CM (curved mirror), LCD (liquid crystal device), D (dichroic), F (short pass filter), PD (photodiode), and SFG (sum frequency generating crystal).

Fig. 3.
Fig. 3.

(a). Spectral intensity and phase profile of the pump and probe pulse. (b). Intensity and phase of a vibrational resonance. (c) and (d). The resonant and non-resonant CARS contribution for the spectral phase in (a) (black) and for a flat spectral phase (thin red).

Fig. 4.
Fig. 4.

Integrated CARS signal for a negative Lorentzian phase profile (positive phase step).

Fig. 5.
Fig. 5.

(a). Spectral intensity and phase profile of the pump and probe pulse. (b). Intensity and phase of a vibrational resonance. (c). and (d). The resonant and non-resonant CARS contribution for the spectral phase in (a) (black) and for 0 flat spectral phase (thin red).

Fig. 6.
Fig. 6.

(a) and (b) CARS-spectra contour plots for a sweep with a positive (a) and negative (b) phase step. c) The difference between a negative and a positive phase step sweep.

Fig. 7.
Fig. 7.

Integrated CARS signals as a function of the width of the phase profile. Green line: positive phase step. Blue line: negative phase step. Red line: the difference, for which the maximum indicates the line width of the resonance

Fig. 8.
Fig. 8.

Normalized integrated CARS signal for acetone, with a positive phase step swept through the spectrum of the pump and probe pulses.

Fig. 9.
Fig. 9.

Results for acetone a) Contour plot for a negative phase step. b) Contour plot for a positive phase step. c) Contour plot for the difference. d) Integrated spectra for the negative and positive phase step.

Fig. 10.
Fig. 10.

Effective line width estimation of acetone. a) Fitted for one transition. b) Fitted for five transitions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ R ( 3 ) ( ω ) = R A R ω R 2 ω 2 + 2 i ω γ R ,
I CARS ( ω c ) ( P ( ω + ω s ) exp [ i Φ ( ω + ω s ) ] · ( χ R ( 3 ) ( ω ) + χ NR ( 3 ) ) Pr ( ω ) exp [ i Φ ( ω ) ] ) 2
ϕ ( ω , γ ) = arg [ γ π 1 ( ω + i γ ) ]

Metrics