Abstract

Sun-induced leaf fluorescence was inferred by using high resolution (0.5 cm-1) radiance measurements and simulated spectra of the solar irradiance at the ground level, in the region of the O2-B absorption band. The minimization of a cost function was performed in the Fourier transform domain in order to make an accurate fit of the Instrumental Line-Shape that convoluted the simulated spectrum. Second- order polynomials were used to fit the leaf fluorescence and reflectance in the 100-cm-1-wide spectral window. The scale and the instrumental conversion factor were also fitted in order to obtain an accuracy that could not be attained by using the radiance measurements alone.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Stoll, A. Court, K. Smoremburg, H. Visser, L. Crocco, J. Heilimo,  et al., "Flex Fluorescence Explorer," Proc Int. Conference Remote Sensing for Earth Science, Ocean and sea ice applications, Europto series, SPIE 3686, 487-494 (1999)
  2. I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
    [CrossRef]
  3. M. Meroni and R. Colombo "Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer," Remote Sens. Environ. 103, 438-448 (2006).
    [CrossRef]
  4. B. Carli,  et al., "MARC: A code for the retrieval of atmospheric parameters from millimeter-wave limb measurements," Journal of Quantitative Spectroscopy and Radiative Transfer online, 8 December 2006B
  5. C. Buschmann, "Variability and application of the chlorophyll fluorescence emission ratio red-far red of leaves," Photosiynth Res. 92, 261-271 (2007).
    [CrossRef]
  6. N. Subash and C. N. Mohanan, "Curve-fit Analysis of Chlorophyll Fluorescence Spectra: Application to Nutrient Stress Detection in Sunflower," Remote Sens. Environ. 60, 347-356 (1997).
    [CrossRef]
  7. R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
    [CrossRef]
  8. http://www.ias.esic.es/fluormod
  9. B. R. Masters, J. Louis, Z. G. Cerovic, and I. Moja, "Quantitative study of fluorescence excitation and emission spectra of bean leaves," J. Photechem. Photobiol. B 85, 65-71 (2006).
    [CrossRef]

2007 (1)

C. Buschmann, "Variability and application of the chlorophyll fluorescence emission ratio red-far red of leaves," Photosiynth Res. 92, 261-271 (2007).
[CrossRef]

2006 (2)

M. Meroni and R. Colombo "Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer," Remote Sens. Environ. 103, 438-448 (2006).
[CrossRef]

B. R. Masters, J. Louis, Z. G. Cerovic, and I. Moja, "Quantitative study of fluorescence excitation and emission spectra of bean leaves," J. Photechem. Photobiol. B 85, 65-71 (2006).
[CrossRef]

2004 (1)

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

1997 (1)

N. Subash and C. N. Mohanan, "Curve-fit Analysis of Chlorophyll Fluorescence Spectra: Application to Nutrient Stress Detection in Sunflower," Remote Sens. Environ. 60, 347-356 (1997).
[CrossRef]

1995 (1)

R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
[CrossRef]

Agati, G.

R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
[CrossRef]

Buschmann, C.

C. Buschmann, "Variability and application of the chlorophyll fluorescence emission ratio red-far red of leaves," Photosiynth Res. 92, 261-271 (2007).
[CrossRef]

Camenenb, L.

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Cerovic, Z. G.

B. R. Masters, J. Louis, Z. G. Cerovic, and I. Moja, "Quantitative study of fluorescence excitation and emission spectra of bean leaves," J. Photechem. Photobiol. B 85, 65-71 (2006).
[CrossRef]

Cerovic, Z. J.

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Colombo, R.

M. Meroni and R. Colombo "Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer," Remote Sens. Environ. 103, 438-448 (2006).
[CrossRef]

Evain, S.

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Fusi, F.

R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
[CrossRef]

Goulas, Y.

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Latouch, G.

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Louis, J.

B. R. Masters, J. Louis, Z. G. Cerovic, and I. Moja, "Quantitative study of fluorescence excitation and emission spectra of bean leaves," J. Photechem. Photobiol. B 85, 65-71 (2006).
[CrossRef]

Masters, B. R.

B. R. Masters, J. Louis, Z. G. Cerovic, and I. Moja, "Quantitative study of fluorescence excitation and emission spectra of bean leaves," J. Photechem. Photobiol. B 85, 65-71 (2006).
[CrossRef]

Masters, R.

R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
[CrossRef]

Mazzinghi, P.

R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
[CrossRef]

Meroni, M.

M. Meroni and R. Colombo "Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer," Remote Sens. Environ. 103, 438-448 (2006).
[CrossRef]

Mohanan, C. N.

N. Subash and C. N. Mohanan, "Curve-fit Analysis of Chlorophyll Fluorescence Spectra: Application to Nutrient Stress Detection in Sunflower," Remote Sens. Environ. 60, 347-356 (1997).
[CrossRef]

Moja, I.

B. R. Masters, J. Louis, Z. G. Cerovic, and I. Moja, "Quantitative study of fluorescence excitation and emission spectra of bean leaves," J. Photechem. Photobiol. B 85, 65-71 (2006).
[CrossRef]

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Subash, N.

N. Subash and C. N. Mohanan, "Curve-fit Analysis of Chlorophyll Fluorescence Spectra: Application to Nutrient Stress Detection in Sunflower," Remote Sens. Environ. 60, 347-356 (1997).
[CrossRef]

Subhash, N.

R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
[CrossRef]

J. Photechem. Photobiol. B (1)

B. R. Masters, J. Louis, Z. G. Cerovic, and I. Moja, "Quantitative study of fluorescence excitation and emission spectra of bean leaves," J. Photechem. Photobiol. B 85, 65-71 (2006).
[CrossRef]

Photochem. Photobiol. (1)

R. Masters, N. Subhash, P. Mazzinghi, G. Agati and F. Fusi "Analysis of laser-induced fluorescence line shape of intact leaves: application to UV stress detection," Photochem. Photobiol. 62, 711-718 (1995).
[CrossRef]

Photosiynth Res. (1)

C. Buschmann, "Variability and application of the chlorophyll fluorescence emission ratio red-far red of leaves," Photosiynth Res. 92, 261-271 (2007).
[CrossRef]

Remote Sens. Environ. (3)

N. Subash and C. N. Mohanan, "Curve-fit Analysis of Chlorophyll Fluorescence Spectra: Application to Nutrient Stress Detection in Sunflower," Remote Sens. Environ. 60, 347-356 (1997).
[CrossRef]

I. Moja, L. Camenenb, S. Evain, Y. Goulas, Z. J. Cerovic, G. Latouch,  et al., "A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

M. Meroni and R. Colombo "Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer," Remote Sens. Environ. 103, 438-448 (2006).
[CrossRef]

Other (3)

B. Carli,  et al., "MARC: A code for the retrieval of atmospheric parameters from millimeter-wave limb measurements," Journal of Quantitative Spectroscopy and Radiative Transfer online, 8 December 2006B

http://www.ias.esic.es/fluormod

M. P. Stoll, A. Court, K. Smoremburg, H. Visser, L. Crocco, J. Heilimo,  et al., "Flex Fluorescence Explorer," Proc Int. Conference Remote Sensing for Earth Science, Ocean and sea ice applications, Europto series, SPIE 3686, 487-494 (1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simulated solar irradiance sampled at 0.02 cm-1

Fig. 2.
Fig. 2.

Normalized residuals as a function of source intensity for a constant (a) and variable (b) β parameter.

Fig. 3.
Fig. 3.

Simulated white panel radiance sW(k) and W(k) spectra, and ResW residuals (lower trace)

Fig. 4.
Fig. 4.

Simulated (sLF) and measured (LF) spectra of the front leaf radiance and residuals (ResLF), both normalized to Smax.

Fig. 5.
Fig. 5.

Residuals normalized to Smax for the front leaf radiance obtained with (ResLF) and without (ResLNF) fluorescence included in (2), and the difference (Dif_Res) between the two residuals.

Fig. 6.
Fig. 6.

Simulated normalized fluorescence F/Smax and reflectance R for the front (FF and RF) and rear (FR and RR) sides of the leaf, respectively.

Fig. 7.
Fig. 7.

Simulated normalized fluorescence F/Smax and reflectance R for the front (FF1 and RF1) and back (FR1 and RR1) sides of the leaf, respectively

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β M W ( k ) = S ( k ) I L S ( k )
β M L ( k ) = [ S ( k ) R ( k ) + F ( k ) ] I L S ( k )
NL = 100 L max Im in Im ax I β ( I ) L ( I ) dI I max I min
M L ( k ) = M W ( k ) R ( k ) + F c ( k )

Metrics