Abstract

Structured illumination applied to imaging interferometric microscopy (IIM) allows extension of the resolution limit of low numerical aperture objective lenses to ultimate linear systems limits (≲λ/4 in air) without requiring a reference beam around the objective lens. Instead, the reference beam is provided by an illumination beam just at the edge of the optical system numerical aperture resulting in a shift of the recorded spatial frequencies (equivalent to an intermediate frequency). The restoration procedure is discussed. This technique is adaptable readily to existing microscopes, since extensive access to the imaging system pupil plane is not required.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 413 - 420 (1873).
    [CrossRef]
  2. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
    [CrossRef] [PubMed]
  3. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. 102, 13081-13086, (2005).
    [CrossRef] [PubMed]
  4. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
    [CrossRef]
  5. V. Westphal and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143903 (2005).
    [CrossRef] [PubMed]
  6. W. Lukosz and M. Marchant, "Optischen Abbildung Unter Ueberschreitung der Beugungsbedingten Aufloesungsgrenze," Opt. Acta 10, 241-255 (1963).
    [CrossRef]
  7. W. Lucosz, "Optical Systems with Resolving Powers Exceeding the Classical Limit," J. Opt. Soc. Am. 57, 932-941 (1967).
    [CrossRef]
  8. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003).
    [CrossRef] [PubMed]
  9. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
    [CrossRef] [PubMed]
  10. V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Express 14, 5168-5177 (2006).
    [CrossRef] [PubMed]
  11. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651 (2007).
    [CrossRef] [PubMed]
  12. X. Chen and S. R. J. Brueck, "Imaging interferometric lithography - approaching the resolution limits of optics," Opt. Lett. 24, 124-126 (1999).
    [CrossRef]
  13. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy," J. Opt. Soc. Am. A 25, 811-822 (2008).
    [CrossRef]
  14. I. Tamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6185 (2001).
    [CrossRef]
  15. T. Kreis, Handbook of holographic interferometry: optical and digital methods (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005).

2008

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy," J. Opt. Soc. Am. A 25, 811-822 (2008).
[CrossRef]

2007

2006

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Express 14, 5168-5177 (2006).
[CrossRef] [PubMed]

2005

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. 102, 13081-13086, (2005).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

2003

2001

2000

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

1999

1967

1963

W. Lukosz and M. Marchant, "Optischen Abbildung Unter Ueberschreitung der Beugungsbedingten Aufloesungsgrenze," Opt. Acta 10, 241-255 (1963).
[CrossRef]

1873

E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 413 - 420 (1873).
[CrossRef]

Abbe, E.

E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 413 - 420 (1873).
[CrossRef]

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Brueck, S. R. J.

Chen, X.

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Eggeling, C.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Garcia, J.

Gustafsson, M. G. L.

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. 102, 13081-13086, (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Hell, S. W.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

V. Westphal and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Kato, J.

Keller, J.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Kuznetsova, Y.

Lucosz, W.

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Lukosz, W.

W. Lukosz and M. Marchant, "Optischen Abbildung Unter Ueberschreitung der Beugungsbedingten Aufloesungsgrenze," Opt. Acta 10, 241-255 (1963).
[CrossRef]

Marchant, M.

W. Lukosz and M. Marchant, "Optischen Abbildung Unter Ueberschreitung der Beugungsbedingten Aufloesungsgrenze," Opt. Acta 10, 241-255 (1963).
[CrossRef]

Medda, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Mico, V.

Mizuno, J.

Neumann, A.

Ohta, S.

Rizzoli, S. O.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Schwarz, C. J.

Tamaguchi, I.

Westphal, V.

V. Westphal and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Zalevsky, Z.

Appl. Opt.

Arch. Mikrosk. Anat. Entwicklungsmech.

E. Abbe, Arch. Mikrosk. Anat. Entwicklungsmech. 9, 413 - 420 (1873).
[CrossRef]

J Opt Soc Am A

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy," J. Opt. Soc. Am. A 25, 811-822 (2008).
[CrossRef]

J. Microsc.

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Opt. Acta

W. Lukosz and M. Marchant, "Optischen Abbildung Unter Ueberschreitung der Beugungsbedingten Aufloesungsgrenze," Opt. Acta 10, 241-255 (1963).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci.

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. 102, 13081-13086, (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Soc. USA

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, AND S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Soc. USA 103, 11440-11445 (2006).
[CrossRef]

Other

T. Kreis, Handbook of holographic interferometry: optical and digital methods (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical arrangements for (a) conventional IIM with an interferometer that includes the objective lens, and (b) structured illumination with the interferometer in front of the object.

Fig. 2.
Fig. 2.

Schematic of structural illumination and restoration algorithms: a) the object is illuminated simultaneously by two coherent beams: one at an extreme off-axis angle (green) and one (local oscillator, orange) at an angle of ~sin-1(NA) to the normal. High frequencies diffracted from the extreme off-axis illumination mix with low frequencies from the local oscillator, the dark field of the image is obtained by blocking the 0-order beam in the image pupil plane, b) low frequency image/dark field obtained by local oscillator illumination only with and without the 0-order blocked c) the dark field of the image is subtracted as well as the low frequency image without the dark field. Then frequencies are shifted in Fourier space and the total image can be reconstructed by standard IIM procedures: combining high and low frequency images.

Fig. 3.
Fig. 3.

Structured illumination with extreme off-axis illumination beam (green) and reference beam (orange) injected between object and objective lens.

Fig. 4.
Fig. 4.

(a,b) the mixed image corresponding to the interference of the low and high images, (c,d) the image after subtraction dark field and low frequency image, and (e,f) restored high frequency image.

Fig. 5.
Fig. 5.

(a). reconstructed image of 260- and 240-nm CD structures obtained using the optical configuration of Fig. 1 (b); b) crosscut of the image (green) compared with a crosscut of corresponding simulation (blue).

Fig. 6.
Fig. 6.

(a). reconstructed image of 260- and 240-nm CD structures (reinjection of zero-order between object and objective lens (Fig. 3), b) crosscut of the image (green) compared with a crosscut of corresponding simulation (blue).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A 0 , 0 exp ( i ω off x ) e i γ 0 , 0 off z + k , l 0 T ( k ω x ω off ; l ω y ) A k , l exp [ ix ( k ω x ω off ) + i l ω y y ] e i γ k , l off z
T ( k ω X ; l ω Y ) = { 1 for ( k ω X ) 2 + ( l ω Y ) 2 ω MAX = 2 π N A λ 0 else
A 0 , 0 2 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( dc offset )
k , l 0 A 0 , 0 A k , l * T ( k ω x ω off ; l ω y ) exp [ ik ω x x + i l ω y y ] e i ( γ 0 , 0 off γ k , l off ) z + c . c . + . . . ( imaging )
k . l 0 , k , l 0 A k , l T ( k ω x ω off ; l ω y ) A n , l * T ( k ω x ω off ; l ω y ) ×
exp [ i ( k k ) ω x x + i ( l l ) ω y y ] e i ( γ k , l off γ k , l off ) z . . . . . . . . . . . . . . . . . . . . . . . . . ( dark field )
A 0 , 0 exp ( i ω off x ) e i γ 0 , 0 off z + k , l 0 A k , l exp [ i ( k ω x ω off ) x + i l ω y y ] e i γ k , l off z +
B 0 , 0 exp ( i ω NA x ) e i γ 0 , 0 NA + p , r 0 B p , r exp [ i ( p ω x ω NA ) x + i r ω y y ] e i γ p , r NA z
B 0 , 0 2 +
{ p , r 0 B 0 , 0 B p , r * T ( p ω x ω NA ; r ω y ) exp [ i ( p ω x x + r ω y y ) ] e i ( γ 0 , 0 NA γ p , r NA ) z + c . c . + p , r 0 p , r 0 B p , r B p , r * T ( p ω x ω NA ; r ω y ) T ( p ω x ω NA ; r ω y ) exp [ i ( p p ) x + i ( r r ) y ] e i ( γ p , r NA γ p , r NA ) z } +
{ k , l B 0 , 0 A k , l * T ( l ω x ω off ; n ω y ) exp [ i ( k ω x ω off + ω NA ) x i k ω y y ] e i ( γ 0 , 0 NA γ k , l off ) z + c . c . } +
k , l k , l A k , l A k , l′ * T ( k ω x ω off ; l ω y ) T ( k ω x ω off ; l ω y ) exp [ i ( k k ) ω x x + i ( l l ) ω y y ] e i ( γ k , l off γ k , l off ) z + c . c .
k , l p , r 0 A k , l B p , r * T ( k ω x ω off ; l ω y ) T ( p ω x ω NA ; r ω y ) ×
exp [ i ( k p ) ω x + i ( ω NA ω off ) x + i ( l r ) ω y ] e i ( γ k , l off γ p , r NA ) z + c . c .

Metrics