Abstract

We developed a method to adjust measurement range within axial–lateral parallel time-domain optical coherence tomography (ALP TD-OCT) using an optical zoom lens and high-order diffracted lights. A two-dimensional (2-D) camera can produce a depth-resolved interference image using diffracted light as the reference beam and a linear illumination beam without axial and lateral scans. The lateral range can be varied continuously from 4 to 8 mm using an optical zoom lens. Axial range could be adjusted discretely by 1st, 2nd, 3rd, and 4th orders because we used a reflective diffraction grating with 300 lines/mm in a 1.3 μm wavelength region. OCT images (320 × 256 pixels) can be displayed at 30 frames per second (fps) by calculating two interference images, captured by an InGaAs camera operated at 60 fps. With a 1.05-ms exposure, the ALP TD-OCT system has sufficient sensitivity (94.6 dB) to image the human finger in vivo.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998).
    [CrossRef] [PubMed]
  3. G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  4. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  6. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography, " Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  7. A. Zuluaga and R. Richards-Kortum, "Spatially resolved spectral interferometry for determination of subsurface structure," Opt. Lett. 24, 519-521 (1999).
    [CrossRef]
  8. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry, " Opt. Express 13, 695-701 (2005).
    [CrossRef] [PubMed]
  9. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005).
    [CrossRef] [PubMed]
  10. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
    [CrossRef] [PubMed]
  11. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  12. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
    [CrossRef] [PubMed]
  13. M. Lebec, L. Blanchot, H. Saint-jalmes, E. Beaurepaire, and A. C. Boccara, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  14. A. Dubois, L. Vabre, A.C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  15. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. Le Gargasson, and C. Boccara, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express 13, 6286-6295 (2005),
    [CrossRef] [PubMed]
  16. A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.  266, 738-743 (2006).
    [CrossRef]
  17. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, "Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography," Opt. Lett. 29, 736-738 (2004).
    [CrossRef] [PubMed]
  18. I. Zeylikovich, A. Gilerson, and R. R. Alfano, "Nonmechanical grating-generated scanning coherence microscopy," Opt. Lett. 23, 1797-1799 (1998).
    [CrossRef]
  19. Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commu. 261, 376-380 (2006).
    [CrossRef]
  20. Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006).
    [CrossRef] [PubMed]

2006 (4)

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.  266, 738-743 (2006).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commu. 261, 376-380 (2006).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

2003 (3)

2002 (2)

1999 (1)

1998 (4)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Alfano, R. R.

Aoki, G.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

Bajraszewski, T.

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Boccara, A.C.

Boccara, C.

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

de Boer, J. F.

Dubois, A.

Endo, T.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry, " Opt. Express 13, 695-701 (2005).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gilerson, A.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grieve, K.

Häusler, G.

G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

Itoh, M.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry, " Opt. Express 13, 695-701 (2005).
[CrossRef] [PubMed]

Izatt, J. A.

Karamata, B.

Kowalczyk, A.

Kulkarni, M. D.

Lambelet, P.

Lasser, T.

Laubscher, M.

Le Gargasson, J.

Lebec, M.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Makita, S.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry, " Opt. Express 13, 695-701 (2005).
[CrossRef] [PubMed]

Moneron, G.

A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.  266, 738-743 (2006).
[CrossRef]

Nassif, N.

Paques, M.

Park, B. H.

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Richards-Kortum, R.

Rollins, A. M.

Sahel, J.

Saint-jalmes, H.

Salathé, R. P.

Sato, M.

Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commu. 261, 376-380 (2006).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Simonutti, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Ungarunyawee, R.

Vabre, L.

Watanabe, Y.

Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006).
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commu. 261, 376-380 (2006).
[CrossRef]

Wojtkowski, M.

Yamada, K.

Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commu. 261, 376-380 (2006).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006).
[CrossRef] [PubMed]

Yasuno, Y.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry, " Opt. Express 13, 695-701 (2005).
[CrossRef] [PubMed]

Yatagai, T.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry, " Opt. Express 13, 695-701 (2005).
[CrossRef] [PubMed]

Yazdanfar, S.

Yun, S. H.

Zeylikovich, I.

Zuluaga, A.

Appl. Opt. (1)

J. Biomed. Opt. (2)

G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

Opt. Commu. (1)

Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commu. 261, 376-380 (2006).
[CrossRef]

Opt. Commun. (1)

A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.  266, 738-743 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (7)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of axial-lateral parallel time-domain optical coherence tomography. SLD: superluminescent diode, BS: beam splitter, CL: cylindrical lens. Inset is the camera area. The horizontal pixels (N = 256) and vertical pixels (M = 320) were used to measure axial and lateral ranges in samples, respectively.

Fig. 2.
Fig. 2.

Calculated diffraction angles at each order and spectrum of SLD

Fig. 3.
Fig. 3.

(a) Calculated imaging ranges at each order of diffraction. Solid lines represent axial range. Broken lines represent lateral range. (b) Estimated axial resolutions in air at each order of diffraction.

Fig. 4.
Fig. 4.

(a) Measured line profile of group 3 at 1.0× magnification. (b) Measured line profile of group 5 at 2.0× magnification

Fig. 5.
Fig. 5.

(a) Measured linear beam widths. Solid lines represent theoretical curves. (b) Peak intensity ratios of focused beams to the incident beam.

Fig. 6.
Fig. 6.

(a) Pixel values and (b) sensitivities with an attenuation of -50 dB in the sample arm for each magnification.

Fig. 7.
Fig. 7.

In vivo OCT images of a human nail fold region (a) at 1.0× magnification, with an imaging range of 8.0 × 2.6 mm2 (x × z); (b) at 2.0× magnification, with an imaging range of 4.0 × 1.3 mm2 (x × z); and (c) with images overlapped, where the gray region corresponds to Fig. 7(b).

Fig. 8.
Fig. 8.

In vivo OCT images of a human nail fold region at (a) 2nd, (b) 3rd, and (c) 4th orders of diffracted light. Axial ranges were 1.3 mm, 2.3 mm, and 4.1 mm, respectively. The red lines correspond to the region of axial profiles in Fig. 9.

Fig. 9.
Fig. 9.

Axial profiles of the nail plate in each OCT image

Tables (1)

Tables Icon

Table 1. Littrow angle at each order diffracted light.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

p ( sin α + sin β ) = ,
θ = sin 1 ( 0 2 p ) .
β = sin 1 ( p sin θ ) .
ΔZ = d tan θ ,
Δ Z = Δ Y tan θ = N M Δ X tan θ .
Δ Z max = Δ l × N 2 = l c 2 × N 2 .
I ( x , y ) = I sig + I ref + 2 [ I ref I in ( R sig ( x , z ) * γ ( z ) ) ] 1 2 cos ϕ ,
S = ( I 1 I 2 ) 2 = 4 [ I ref I in ( R sig ( x , z ) * γ ( z ) ) ] ( cos ϕ 1 cos ϕ 2 ) 2 .
I in [ r , ω ( z ) ] = 2 π ω 2 ( z ) exp [ 2 r 2 ω 2 ( z ) ] .
ω 2 ( z ) = ω 0 2 [ 1 + ( λ 0 z πω 0 2 ) 2 ] ,
I in [ 0 , ω ( z ) ] I in ( 0 , d 2 ) = d 2 ω ( z ) .
R min = ( R ref + R inc ) 2 2 R ref ξ max ,

Metrics