Abstract

We demonstrate dispersion matching of sample and reference arms in an optical frequency domain reflectometry-optical coherence tomography (OFDR-OCT) system with a discretely swept light source centered at 1550 nm, using a dispersion-shifted fiber (DSF) in the reference arm. By adjusting the optical length of the DSF so that it is equal to that of the free space in the sample arm, we achieve a high resolution of 27.2 μm (in air), which is very close to the theoretically expected value of 26.8 μm when we measure the reflective mirror. This improves the degraded resolution (36.1 μm) in a system using a conventional single-mode fiber when the free-space length in the sample arm was 909 mm. We also demonstrate a clear interface between air and the enamel layer of an extracted human tooth with the discretely swept (DS) OFDR-OCT imaging due to the improved resolution provided by this technique. In addition, we confirmed the enhanced sharpness of the cellular structure in a dispersion matched OCT image of an onion sample. These results show the potential of our DS-OFDR-OCT system for a compact low-cost apparatus with a high axial resolution.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  3. G. Ha¨usler and M. W. Lindner, ""Coherence radar" and "Specral radar" - New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  4. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  6. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
    [CrossRef] [PubMed]
  7. D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Tissue imaging by OFDR-OCT using an SSG-DBR laser," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimoto, eds., vol. 5690 of Proc. SPIE, pp. 101-113 (2005).
  8. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
    [CrossRef]
  9. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, 5787-5790 (2001).
    [CrossRef]
  10. M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  11. D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
    [CrossRef]
  12. W. Drexler, U. Morgner, F. X. K¨artner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  13. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999).
    [CrossRef]
  14. T. Xie, Z. Wang, and Y. Pan, "Dispersion compensation in high-speed optical coherence tomography by acoustooptic modulation," Appl. Opt. 44, 4272-4280 (2005).
    [CrossRef] [PubMed]
  15. M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
    [CrossRef]
  16. B. J. Ainslie and C. R. Day, "A review of single-mode fibers with modified dispersion characteristics," J. Lightwave. Technol. 4, 967-979 (1986).
    [CrossRef]
  17. S. Yang, Y. Zhang, L. He, and S. Xie, "Broadband dispersion-compensating photonic crystal fiber," Opt. Lett. 31, 2830-2832 (2006).
    [CrossRef] [PubMed]
  18. H. Murata, Handbook of optical fibers and cables (Marcel Dekker, Inc., New York, 1988).
  19. F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993).
    [CrossRef]
  20. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, California, 2000).
  21. N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, Inc., Norwood, 1995).
  22. K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, "Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
  23. D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, "A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
  24. A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
    [CrossRef]
  25. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  26. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]

2006 (2)

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

S. Yang, Y. Zhang, L. He, and S. Xie, "Broadband dispersion-compensating photonic crystal fiber," Opt. Lett. 31, 2830-2832 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (2)

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

1999 (3)

W. Drexler, U. Morgner, F. X. K¨artner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999).
[CrossRef]

1998 (1)

G. Ha¨usler and M. W. Lindner, ""Coherence radar" and "Specral radar" - New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1996 (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1994 (1)

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

1993 (1)

F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1986 (1)

B. J. Ainslie and C. R. Day, "A review of single-mode fibers with modified dispersion characteristics," J. Lightwave. Technol. 4, 967-979 (1986).
[CrossRef]

Ainslie, B. J.

B. J. Ainslie and C. R. Day, "A review of single-mode fibers with modified dispersion characteristics," J. Lightwave. Technol. 4, 967-979 (1986).
[CrossRef]

Amano, T.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

Andr’es, M. V.

A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Choi, D.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

Day, C. R.

B. J. Ainslie and C. R. Day, "A review of single-mode fibers with modified dispersion characteristics," J. Lightwave. Technol. 4, 967-979 (1986).
[CrossRef]

de Boer, J. F.

Drexler, W.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. X. K¨artner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Duker, J. S.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Ferrando, A.

A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Furukawa, H.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hasegawa, T.

He, L.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hiro-Oka, H.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

Ishii, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kanamori, H.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Kano, F.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993).
[CrossRef]

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Ko, T.

Kondo, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Koshiba, M.

Kowalczyk, A.

M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Koyano, Y.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Miret, E. S. J. J.

A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Monsoriu, J. A.

A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Morgner, U.

Nakanishi, M.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

Nelson, J. S.

Nishimura, M.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Ohbayashi, K.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

Onishi, M.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Pan, Y.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Russell, P. S. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Saitoh, K.

Sasaoka, E.

Saxer, C. E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shigematsu, M.

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

Shimizu, K.

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Tearney, G. J.

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993).
[CrossRef]

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Wang, Z.

Wojtkowski, M.

M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Xie, S.

Xie, T.

Yang, S.

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993).
[CrossRef]

Yun, S. H.

Zhang, Y.

Appl. Opt. (3)

Electron. Lett. (2)

M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250ps/nm/dB," Electron. Lett. 30, 161-163 (1994).
[CrossRef]

A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, "Designing a photonic crystal fibre with flattend chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, "Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers," IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning," IEEE Photon. Technol. Lett. 5, 611-613 (1993).
[CrossRef]

J. Biomed. Opt (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging," J. Biomed. Opt 4, 144-151 (1999).
[CrossRef]

J. Biomed. Opt. (2)

G. Ha¨usler and M. W. Lindner, ""Coherence radar" and "Specral radar" - New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Lightwave. Technol. (1)

B. J. Ainslie and C. R. Day, "A review of single-mode fibers with modified dispersion characteristics," J. Lightwave. Technol. 4, 967-979 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain reflectometry optical coherence tomography," Jpn. J. Appl. Phys. 45, 6022-6027 (2006).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (6)

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Tissue imaging by OFDR-OCT using an SSG-DBR laser," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimoto, eds., vol. 5690 of Proc. SPIE, pp. 101-113 (2005).

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, California, 2000).

N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, Inc., Norwood, 1995).

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, "Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds., vol. 6429 of Proc. SPIE, p. 64291G (2007).

D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, "A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds., vol. 6429 of Proc. SPIE, p. 64292E (2007).

H. Murata, Handbook of optical fibers and cables (Marcel Dekker, Inc., New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of DS-OFDR-OCT systems. A/D, analog to digital; ATT, attenuator; D/A, digital to analog; PC, polarization controller; SSG-DBR-LD, super structured gratings-distributed Bragg reflector-laser diode, (a)System 1: a circulator, free space and lenses are employed in the reference arm, (b)System 2: those components are replaced by an SMF, (c)System 3: those components are replaced by a DSF and SMF.

Fig. 2.
Fig. 2.

Interference signals of the reflective mirror in OFDR-OCT systems. The black and red lines are the signals obtained by System 2 and 3, respectively.

Fig. 3.
Fig. 3.

A-line signals of the reflective mirror at the LC-D-C = 909 mm. The blue, black, and red lines are the signals obtained with System 1, 2, and 3, respectively.

Fig. 4.
Fig. 4.

A-line signals of the reflective mirror around the peak intensity at the LC-D-C = 909 mm. The blue, black, and red lines are the signals obtained with System 1, 2, and 3, respectively. The green line is the signal with numerical dispersion compensation.

Fig. 5.
Fig. 5.

Axial resolution δz as a function of LC-D-C . The blue triangles, black circles, and red rectangulars depict δz of System 1, 2, and 3, respectively

Fig. 6.
Fig. 6.

DS-OFDR-OCT images of a human tooth. (a) OCT image without dispersion matching (System 2). (b) OCT image with dispersion matching (System 3). D and E denote the dentin and enamel layers, respectively.

Fig. 7.
Fig. 7.

A-line signals of the tooth around the peak intensity (interface between the enamel layer and air), corresponding to the broken lines in Fig. 6. The black and red lines were obtained with System 2 and 3, respectively (displayed on a linear scale).

Fig. 8.
Fig. 8.

DS-OFDR-OCT images of a cellular structure in an onion sample. (a) OCT image without dispersion matching (System 2). (b) OCT image with dispersion matching (System 3).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I d , i = ηq hv ( P r + P o r 2 ( z ) dz + 2 P r P o r ( z ) Γ ( z ) cos [ 2 k i z + ϕ i ( z ) ] dz ) ,
I s , i = ηq hv 2 P r P s cos [ 2 k i z 0 ] ,
Δ z = π 2 δk .
δz = 2.78 Δ k ,
I s , i = ηq hv 2 P r P s cos [ 2 k i ( z 0 + δz i ) ] ,
δz i = G H ( n SMF , i n SMF , 0 )
β i = β c + c Δ ω i + 1 2 d 2 β c 2 d ω 2 Δ ω 1 2 + ,
σ = 2 πc λ 0 2 d 2 β 2 d ω 2 ,

Metrics