Abstract

We theoretically and experimentally demonstrate an ultrasensitive two-dimensional photonic crystal microcavity biosensor. The device is fabricated on a silicon-on-insulator wafer and operates near its resonance at 1.58 μm. Coating the sensor internal surface with proteins of different sizes produces a different amount of resonance redshift. The present device can detect a molecule monolayer with a total mass as small as 2.5 fg. The device performance is verified by measuring the redshift corresponding to the binding of glutaraldehyde and bovine serum albumin (BSA). The experimental results are in good agreement with theory and with ellipsometric measurements performed on a flat oxidized silicon wafer surface.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Specific detection of proteins using photonic crystal waveguides

S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy
Opt. Express 16(20) 15949-15957 (2008)

Discrimination of “specific” and “nonspecific” binding in two-dimensional photonic crystals

James E. Baker and Benjamin L. Miller
Opt. Express 23(6) 7101-7110 (2015)

Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection

Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron
Biomed. Opt. Express 2(9) 2731-2740 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
    [Crossref]
  2. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754–3764 (2005).
    [Crossref] [PubMed]
  3. V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
    [Crossref] [PubMed]
  4. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
    [Crossref]
  5. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
    [Crossref]
  6. S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797–11798 (2001).
    [Crossref] [PubMed]
  7. H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
    [Crossref]
  8. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
    [Crossref]
  9. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B 120, 187–193 (2006).
    [Crossref]
  10. G. J. Sonek, “Integrated photonic crystal waveguides for micro-bioanalytical devices” in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333–335.
  11. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670–684 (2002).
    [PubMed]
  12. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  13. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
    [Crossref]
  14. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [Crossref] [PubMed]
  15. H. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14, 7368–7377 (2006).
    [Crossref] [PubMed]
  16. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Am. B 16, 275–285 (1999).
    [Crossref]
  17. I. D. Kuntz and W. Kauzmann, “Hydration of proteins and polypeptides,” Adv. Protein Chem. 28, 239–345 (1974).
    [Crossref] [PubMed]
  18. P. G. Squire, P. Moser, and C. T. O’Konski, “Hydrodynamic properties of bovine serum albumin monomer and dimer,” J. Biochem. 7, 4261–4272 (1968).
    [Crossref]
  19. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88, 163108 (2006).
    [Crossref]
  20. V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76, 7257–7262 (2004).
    [Crossref] [PubMed]
  21. D. Nedelkov, K. A. Tubbs, and R. W. Nelson, “Surface plasmon resonance-enabled mass spectrometry arrays,” Electrophoresis 27, 3671 (2006).
    [Crossref] [PubMed]

2006 (4)

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B 120, 187–193 (2006).
[Crossref]

H. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14, 7368–7377 (2006).
[Crossref] [PubMed]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88, 163108 (2006).
[Crossref]

D. Nedelkov, K. A. Tubbs, and R. W. Nelson, “Surface plasmon resonance-enabled mass spectrometry arrays,” Electrophoresis 27, 3671 (2006).
[Crossref] [PubMed]

2005 (2)

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754–3764 (2005).
[Crossref] [PubMed]

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
[Crossref]

2004 (3)

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
[Crossref]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
[Crossref] [PubMed]

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76, 7257–7262 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2002 (3)

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670–684 (2002).
[PubMed]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

2001 (1)

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797–11798 (2001).
[Crossref] [PubMed]

2000 (1)

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
[Crossref]

1999 (1)

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Am. B 16, 275–285 (1999).
[Crossref]

1997 (1)

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

1993 (1)

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

1974 (1)

I. D. Kuntz and W. Kauzmann, “Hydration of proteins and polypeptides,” Adv. Protein Chem. 28, 239–345 (1974).
[Crossref] [PubMed]

1968 (1)

P. G. Squire, P. Moser, and C. T. O’Konski, “Hydrodynamic properties of bovine serum albumin monomer and dimer,” J. Biochem. 7, 4261–4272 (1968).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Almeida, V.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Bhatia, S. N.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Block, I. D.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B 120, 187–193 (2006).
[Crossref]

Chan, L. L.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B 120, 187–193 (2006).
[Crossref]

Chan, S.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797–11798 (2001).
[Crossref] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
[Crossref]

Chen, H.

Chow, E.

Christophersen, M.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
[Crossref]

Cunin, F.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Cunningham, B. T.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B 120, 187–193 (2006).
[Crossref]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Dancil, K.-P. S.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Fauchet, P. M.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88, 163108 (2006).
[Crossref]

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
[Crossref]

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754–3764 (2005).
[Crossref] [PubMed]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797–11798 (2001).
[Crossref] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
[Crossref]

Ghadir, M. R.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Girolami, G.

Grot, A.

Harrison, D. J.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76, 7257–7262 (2004).
[Crossref] [PubMed]

Horner, S. R.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797–11798 (2001).
[Crossref] [PubMed]

Kanda, V.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76, 7257–7262 (2004).
[Crossref] [PubMed]

Kariuki, J. K.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76, 7257–7262 (2004).
[Crossref] [PubMed]

Kauzmann, W.

I. D. Kuntz and W. Kauzmann, “Hydration of proteins and polypeptides,” Adv. Protein Chem. 28, 239–345 (1974).
[Crossref] [PubMed]

Koh, J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Kuntz, I. D.

I. D. Kuntz and W. Kauzmann, “Hydration of proteins and polypeptides,” Adv. Protein Chem. 28, 239–345 (1974).
[Crossref] [PubMed]

Li, P.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Li, Y.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
[Crossref]

Li, Y. Y.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Liedberg, B.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

Lin, B.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Link, J. R.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Lipson, M.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
[Crossref]

Lundstrom, I.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

Manolatou, C.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
[Crossref]

McDermott, M. T.

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76, 7257–7262 (2004).
[Crossref] [PubMed]

Miller, B. L.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
[Crossref]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797–11798 (2001).
[Crossref] [PubMed]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
[Crossref]

Mirkarimi, L. W.

Moser, P.

P. G. Squire, P. Moser, and C. T. O’Konski, “Hydrodynamic properties of bovine serum albumin monomer and dimer,” J. Biochem. 7, 4261–4272 (1968).
[Crossref]

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Nedelkov, D.

D. Nedelkov, K. A. Tubbs, and R. W. Nelson, “Surface plasmon resonance-enabled mass spectrometry arrays,” Electrophoresis 27, 3671 (2006).
[Crossref] [PubMed]

Nelson, R. W.

D. Nedelkov, K. A. Tubbs, and R. W. Nelson, “Surface plasmon resonance-enabled mass spectrometry arrays,” Electrophoresis 27, 3671 (2006).
[Crossref] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

O’Konski, C. T.

P. G. Squire, P. Moser, and C. T. O’Konski, “Hydrodynamic properties of bovine serum albumin monomer and dimer,” J. Biochem. 7, 4261–4272 (1968).
[Crossref]

Ouyang, H.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88, 163108 (2006).
[Crossref]

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
[Crossref]

Painter, O.

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670–684 (2002).
[PubMed]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Am. B 16, 275–285 (1999).
[Crossref]

Pepper, J.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Poon, A. W.

Preble, S.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
[Crossref]

Rothberg, L. J.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
[Crossref]

Saarinen, J. J.

Sailor, M. J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Scherer, A.

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Am. B 16, 275–285 (1999).
[Crossref]

Schmedake, T. A.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Schmidt, B.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
[Crossref]

Sigalas, M.

Sipe, J. E.

Sonek, G. J.

G. J. Sonek, “Integrated photonic crystal waveguides for micro-bioanalytical devices” in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333–335.

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Squire, P. G.

P. G. Squire, P. Moser, and C. T. O’Konski, “Hydrodynamic properties of bovine serum albumin monomer and dimer,” J. Biochem. 7, 4261–4272 (1968).
[Crossref]

Srinivasan, K.

Stenberg, E.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

Striemer, C. C.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88, 163108 (2006).
[Crossref]

Tsia, K. K.

Tubbs, K. A.

D. Nedelkov, K. A. Tubbs, and R. W. Nelson, “Surface plasmon resonance-enabled mass spectrometry arrays,” Electrophoresis 27, 3671 (2006).
[Crossref] [PubMed]

Viard, R.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
[Crossref]

Vuckovic, J.

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Am. B 16, 275–285 (1999).
[Crossref]

Weiss, S. M.

Adv. Funct. Mater. (1)

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, “Macroporous silicon microcavity for macromolecule detection,” Adv. Funct. Mater. 15, 1851–1859 (2005).
[Crossref]

Adv. Protein Chem. (1)

I. D. Kuntz and W. Kauzmann, “Hydration of proteins and polypeptides,” Adv. Protein Chem. 28, 239–345 (1974).
[Crossref] [PubMed]

Anal. Chem. (1)

V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, “Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging,” Anal. Chem. 76, 7257–7262 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88, 163108 (2006).
[Crossref]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85, 4854–4856 (2004).
[Crossref]

Electrophoresis (1)

D. Nedelkov, K. A. Tubbs, and R. W. Nelson, “Surface plasmon resonance-enabled mass spectrometry arrays,” Electrophoresis 27, 3671 (2006).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797–11798 (2001).
[Crossref] [PubMed]

J. Biochem. (1)

P. G. Squire, P. Moser, and C. T. O’Konski, “Hydrodynamic properties of bovine serum albumin monomer and dimer,” J. Biochem. 7, 4261–4272 (1968).
[Crossref]

J. Opt. Am. B (1)

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Am. B 16, 275–285 (1999).
[Crossref]

Nat. Mater. (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Stat. Sol. A. (1)

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Stat. Sol. A. 182, 541–546 (2000).
[Crossref]

Science (1)

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, “A porous silicon-based optical interferometric biosensor,” Science 278, 840–843 (1997).
[Crossref] [PubMed]

Sens. Actuators B (3)

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B 120, 187–193 (2006).
[Crossref]

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

Other (1)

G. J. Sonek, “Integrated photonic crystal waveguides for micro-bioanalytical devices” in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333–335.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning electron microscopy photograph of a typical device and schematic of the experimental setup. A tunable laser (1440 nm to 1590 nm) is used as the source. Light is coupled in and out of the PC using tapered ridge waveguides. A polarization controller is used to maximize the TE mode signal, and an InGaAs detector is used to measure the transmission signal.

Fig. 2.
Fig. 2.

Schematic of bio-molecule recognition: (a) the target molecules are captured by the probe molecules. (b) The bio-molecules form a uniform layer on the internal surface of the sensor. In reality the layer thickness is very small compared with the pore size.

Fig. 3.
Fig. 3.

Normalized transmission spectra of the PC microcavity. Curve (a) indicates the initial spectrum resonance after oxidation and silanization, curve (b) is measured after glutaraldehyde attaches to the pore walls, and curve (c) is obtained after infiltration of BSA molecules.

Fig. 4.
Fig. 4.

(a) Calculated resonance redshift versus the monolayer coating thickness on the pore wall, bottom, and top of the device. (b) Red curve shows the calculated resonance redshift versus the coating thickness on the pore wall. Blue dots show the protein layer thicknesses measured by ellipsometry. The ellipsometric data are in agreement with the model.

Fig. 5.
Fig. 5.

(a) Schematic of field confinement in a 2-D PC microcavity (the scales are in μm). The colorbar indicates the scale of electric field intensity. (b) Resonance redshift versus coating thickness on the pore walls. The blue curve shows the redshift due to the uniform infiltration of bio-molecules in all the pores. The red curve shows the redshift due to the infiltration only in the central defect. The inset at the top left shows the normalized sensitivity (Δλ/Δt) vs. the surface area covered by the bio-molecules. If the region coated with bio-molecules extends to pores away from the defect, the sensitivity first increases rapidly and then saturates.

Fig. 6.
Fig. 6.

(a) Schematic of biotin-streptavidin binding recognition. (b) Amount of resonance red-shift resulting from device exposure to different solutions. Bar (A) shows the amount of redshift resulting from specific binding of streptavidin to biotin. Bar (B) shows that the contribution to the shift from non-specific binding (no probe molecule) is negligible. Bar (C) shows that there is no contribution by the buffer alone.

Metrics