Abstract

We present what is to our knowledge the first observation of a diffusing-wave-spectroscopy signal recorded in-vivo on the ocular fundus. A modified ophthalmic microscope was developed which can acquire diffusing-wave-spectroscopy signal from the eye fundus. The diffusing-wave-spectroscopy signal was recorded in-vivo on a rabbit eye during transpupillary thermotherapy. Experimental results show the ability of the system to detect motion of the scattering sites in the ocular fundus layers during laser thermal heating.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave Spectroscopy,” Phys. Rev. Lett. 60,ll34–ll37 (1988).
    [Crossref]
  2. D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density Waves by Spherical Inhomogeneties within Turbid Media: Analytic Solution and Applications,” Proc. Nail. Acad. Sci. USA 91,4887–4891 (1994).
    [Crossref]
  3. D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlation,” Phys. Rev. Lett. 75,1855–1858 (1995).
    [Crossref] [PubMed]
  4. F.C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B 40,2382–2406 (1989).
    [Crossref]
  5. M. Hammer, A. Roggan, D. Scweitzer, and G. Müller, “Optical properties of ocular fundus tissue-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40,963–978 (1995).
    [Crossref] [PubMed]
  6. D.A. Weitz and D.J. Pine, Dynamic Light Scattering: The Method and Some Applications (Claredon Press, Oxford, 1993).
  7. A.D. Gopal and D.J. Durian, “Shear-Induced “Melting” of an Aqueous Foam,” J. Colloid Interface Sci. 213,169–178 (1999).
    [Crossref] [PubMed]
  8. P.A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57,4498–4515 (1998).
    [Crossref]
  9. A. Kienle, “Non-invasive determination of muscle blood flow in the extremities from laser Doppler spectra,” Phys. Med. Biol. 46,1231–1244 (2001).
    [Crossref] [PubMed]
  10. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
    [Crossref]
  11. L. Rovati, F. Fankhauser II, and J. Ricka, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67,2615–2620 (1996).
    [Crossref]
  12. R.S. Newsom, J.C. McAlister, M. Saeed, and J.D. McHugh, “Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation,” Br J Ophthalmol. 85,173–178 (2001).
    [Crossref] [PubMed]
  13. W.S. Weinberg, R. Birngruber, and B. Lorenz, “The Change in Light Reflection of the Retina During Therapeutic Laser-Photocoagulation determined by histological examination,” IEEE J. Quantum Electron. QE-20,1481–1489 (1984).
    [Crossref]
  14. S.E. Skipetrov and I.V. Meglinski, “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scatterer flows,” J. Exp. Theor. Phys. 86,661–665 (1998).
    [Crossref]
  15. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Physical Review E 63,0614041–06140411 (2001).
    [Crossref]
  16. G. Maret and P.E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z Phys. B 65,409–413 (1987).
    [Crossref]
  17. S.E. Skinpetrov and R. Maynard, “Dynamic multiple scattering of light in multilayer turbid media,” Phys. Lett. A 217,181–185 (1996).
    [Crossref]
  18. J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11,0411111–04111113 (2006).
    [Crossref]
  19. M.A. Mainster and E. Reichel, “Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins,” Ophthalmic Surg. Lasers 31,359–73 (2000).
    [PubMed]
  20. R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
    [Crossref]
  21. L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in macula,” Am J Ophthalmol 89,641–646 (1980).
    [PubMed]
  22. L.M. Parver, C.R. Auker, and D.O. Carpenter, “The stabilizing effect of the choroidal circulation on the temperature environment of the macula,” Retina 2,117–120 (1982).
    [Crossref] [PubMed]
  23. L.M. Parver, C.R. Auker, D.O. Carpenter, and I. Doyle, “Choroidal blood flow, II: reflexive control in the monkey,” Arch Ophthalmol 100,1327–1330 (1982).
    [Crossref] [PubMed]
  24. L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow, III: : reflexive control in human eye,” Arch Ophthalmol 101,1604–1606 (1983).
    [Crossref] [PubMed]
  25. M. Bonaiuti, C. Riva, and L. Rovati, “Optic nerve blood flow response to flicker can be described by a second order linear system model” in Proceeding ARVO 47 (Invest Opthalmol Vis Sci, Ft. Lauderdale, Florida, 2006), p.493.
  26. T. Nagaoka and A. Yoshida, “The effect of ocular warming on ocular circulation in healthy humans,” Arch Ophthalmol 122,1477–1481 (2004).
    [Crossref] [PubMed]

2006 (1)

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11,0411111–04111113 (2006).
[Crossref]

2004 (1)

T. Nagaoka and A. Yoshida, “The effect of ocular warming on ocular circulation in healthy humans,” Arch Ophthalmol 122,1477–1481 (2004).
[Crossref] [PubMed]

2001 (4)

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Physical Review E 63,0614041–06140411 (2001).
[Crossref]

R.S. Newsom, J.C. McAlister, M. Saeed, and J.D. McHugh, “Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation,” Br J Ophthalmol. 85,173–178 (2001).
[Crossref] [PubMed]

A. Kienle, “Non-invasive determination of muscle blood flow in the extremities from laser Doppler spectra,” Phys. Med. Biol. 46,1231–1244 (2001).
[Crossref] [PubMed]

2000 (1)

M.A. Mainster and E. Reichel, “Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins,” Ophthalmic Surg. Lasers 31,359–73 (2000).
[PubMed]

1999 (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
[Crossref]

A.D. Gopal and D.J. Durian, “Shear-Induced “Melting” of an Aqueous Foam,” J. Colloid Interface Sci. 213,169–178 (1999).
[Crossref] [PubMed]

1998 (2)

P.A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57,4498–4515 (1998).
[Crossref]

S.E. Skipetrov and I.V. Meglinski, “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scatterer flows,” J. Exp. Theor. Phys. 86,661–665 (1998).
[Crossref]

1996 (2)

L. Rovati, F. Fankhauser II, and J. Ricka, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67,2615–2620 (1996).
[Crossref]

S.E. Skinpetrov and R. Maynard, “Dynamic multiple scattering of light in multilayer turbid media,” Phys. Lett. A 217,181–185 (1996).
[Crossref]

1995 (2)

D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlation,” Phys. Rev. Lett. 75,1855–1858 (1995).
[Crossref] [PubMed]

M. Hammer, A. Roggan, D. Scweitzer, and G. Müller, “Optical properties of ocular fundus tissue-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40,963–978 (1995).
[Crossref] [PubMed]

1994 (1)

D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density Waves by Spherical Inhomogeneties within Turbid Media: Analytic Solution and Applications,” Proc. Nail. Acad. Sci. USA 91,4887–4891 (1994).
[Crossref]

1989 (1)

F.C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B 40,2382–2406 (1989).
[Crossref]

1988 (1)

D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave Spectroscopy,” Phys. Rev. Lett. 60,ll34–ll37 (1988).
[Crossref]

1987 (1)

G. Maret and P.E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z Phys. B 65,409–413 (1987).
[Crossref]

1984 (1)

W.S. Weinberg, R. Birngruber, and B. Lorenz, “The Change in Light Reflection of the Retina During Therapeutic Laser-Photocoagulation determined by histological examination,” IEEE J. Quantum Electron. QE-20,1481–1489 (1984).
[Crossref]

1983 (1)

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow, III: : reflexive control in human eye,” Arch Ophthalmol 101,1604–1606 (1983).
[Crossref] [PubMed]

1982 (2)

L.M. Parver, C.R. Auker, and D.O. Carpenter, “The stabilizing effect of the choroidal circulation on the temperature environment of the macula,” Retina 2,117–120 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, D.O. Carpenter, and I. Doyle, “Choroidal blood flow, II: reflexive control in the monkey,” Arch Ophthalmol 100,1327–1330 (1982).
[Crossref] [PubMed]

1980 (1)

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in macula,” Am J Ophthalmol 89,641–646 (1980).
[PubMed]

Auker, C.R.

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow, III: : reflexive control in human eye,” Arch Ophthalmol 101,1604–1606 (1983).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, and D.O. Carpenter, “The stabilizing effect of the choroidal circulation on the temperature environment of the macula,” Retina 2,117–120 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, D.O. Carpenter, and I. Doyle, “Choroidal blood flow, II: reflexive control in the monkey,” Arch Ophthalmol 100,1327–1330 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in macula,” Am J Ophthalmol 89,641–646 (1980).
[PubMed]

Birngruber, R.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11,0411111–04111113 (2006).
[Crossref]

W.S. Weinberg, R. Birngruber, and B. Lorenz, “The Change in Light Reflection of the Retina During Therapeutic Laser-Photocoagulation determined by histological examination,” IEEE J. Quantum Electron. QE-20,1481–1489 (1984).
[Crossref]

Boas, D.A.

D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlation,” Phys. Rev. Lett. 75,1855–1858 (1995).
[Crossref] [PubMed]

D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density Waves by Spherical Inhomogeneties within Turbid Media: Analytic Solution and Applications,” Proc. Nail. Acad. Sci. USA 91,4887–4891 (1994).
[Crossref]

Bonaiuti, M.

M. Bonaiuti, C. Riva, and L. Rovati, “Optic nerve blood flow response to flicker can be described by a second order linear system model” in Proceeding ARVO 47 (Invest Opthalmol Vis Sci, Ft. Lauderdale, Florida, 2006), p.493.

Brinkmann, R.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11,0411111–04111113 (2006).
[Crossref]

Campbell, L.E.

D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlation,” Phys. Rev. Lett. 75,1855–1858 (1995).
[Crossref] [PubMed]

Carpenter, D.O.

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow, III: : reflexive control in human eye,” Arch Ophthalmol 101,1604–1606 (1983).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, and D.O. Carpenter, “The stabilizing effect of the choroidal circulation on the temperature environment of the macula,” Retina 2,117–120 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, D.O. Carpenter, and I. Doyle, “Choroidal blood flow, II: reflexive control in the monkey,” Arch Ophthalmol 100,1327–1330 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in macula,” Am J Ophthalmol 89,641–646 (1980).
[PubMed]

Chaikin, P.M.

D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave Spectroscopy,” Phys. Rev. Lett. 60,ll34–ll37 (1988).
[Crossref]

Chance, B.

D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density Waves by Spherical Inhomogeneties within Turbid Media: Analytic Solution and Applications,” Proc. Nail. Acad. Sci. USA 91,4887–4891 (1994).
[Crossref]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
[Crossref]

Doyle, I.

L.M. Parver, C.R. Auker, D.O. Carpenter, and I. Doyle, “Choroidal blood flow, II: reflexive control in the monkey,” Arch Ophthalmol 100,1327–1330 (1982).
[Crossref] [PubMed]

Durian, D. J.

P.A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57,4498–4515 (1998).
[Crossref]

Durian, D.J.

A.D. Gopal and D.J. Durian, “Shear-Induced “Melting” of an Aqueous Foam,” J. Colloid Interface Sci. 213,169–178 (1999).
[Crossref] [PubMed]

Eggleton, C.

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

Elsner, H.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11,0411111–04111113 (2006).
[Crossref]

Ernest, A.

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

Fankhauser II, F.

L. Rovati, F. Fankhauser II, and J. Ricka, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67,2615–2620 (1996).
[Crossref]

Flower, R.W.

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

Gopal, A.D.

A.D. Gopal and D.J. Durian, “Shear-Induced “Melting” of an Aqueous Foam,” J. Colloid Interface Sci. 213,169–178 (1999).
[Crossref] [PubMed]

Hammer, M.

M. Hammer, A. Roggan, D. Scweitzer, and G. Müller, “Optical properties of ocular fundus tissue-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40,963–978 (1995).
[Crossref] [PubMed]

Herbolzheimer, E.

D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave Spectroscopy,” Phys. Rev. Lett. 60,ll34–ll37 (1988).
[Crossref]

John, S.

F.C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B 40,2382–2406 (1989).
[Crossref]

Kandulla, J.

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11,0411111–04111113 (2006).
[Crossref]

Kerczek, C. Von

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

Kienle, A.

A. Kienle, “Non-invasive determination of muscle blood flow in the extremities from laser Doppler spectra,” Phys. Med. Biol. 46,1231–1244 (2001).
[Crossref] [PubMed]

Lemieux, P.A.

P.A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57,4498–4515 (1998).
[Crossref]

Lorenz, B.

W.S. Weinberg, R. Birngruber, and B. Lorenz, “The Change in Light Reflection of the Retina During Therapeutic Laser-Photocoagulation determined by histological examination,” IEEE J. Quantum Electron. QE-20,1481–1489 (1984).
[Crossref]

MacKintosh, F.C.

F.C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B 40,2382–2406 (1989).
[Crossref]

Mainster, M.A.

M.A. Mainster and E. Reichel, “Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins,” Ophthalmic Surg. Lasers 31,359–73 (2000).
[PubMed]

Maret, G.

G. Maret and P.E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z Phys. B 65,409–413 (1987).
[Crossref]

Maynard, R.

S.E. Skinpetrov and R. Maynard, “Dynamic multiple scattering of light in multilayer turbid media,” Phys. Lett. A 217,181–185 (1996).
[Crossref]

McAlister, J.C.

R.S. Newsom, J.C. McAlister, M. Saeed, and J.D. McHugh, “Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation,” Br J Ophthalmol. 85,173–178 (2001).
[Crossref] [PubMed]

McHugh, J.D.

R.S. Newsom, J.C. McAlister, M. Saeed, and J.D. McHugh, “Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation,” Br J Ophthalmol. 85,173–178 (2001).
[Crossref] [PubMed]

Meglinski, I.V.

S.E. Skipetrov and I.V. Meglinski, “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scatterer flows,” J. Exp. Theor. Phys. 86,661–665 (1998).
[Crossref]

Müller, G.

M. Hammer, A. Roggan, D. Scweitzer, and G. Müller, “Optical properties of ocular fundus tissue-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40,963–978 (1995).
[Crossref] [PubMed]

Nagaoka, T.

T. Nagaoka and A. Yoshida, “The effect of ocular warming on ocular circulation in healthy humans,” Arch Ophthalmol 122,1477–1481 (2004).
[Crossref] [PubMed]

Newsom, R.S.

R.S. Newsom, J.C. McAlister, M. Saeed, and J.D. McHugh, “Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation,” Br J Ophthalmol. 85,173–178 (2001).
[Crossref] [PubMed]

O’Leary, M.A.

D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density Waves by Spherical Inhomogeneties within Turbid Media: Analytic Solution and Applications,” Proc. Nail. Acad. Sci. USA 91,4887–4891 (1994).
[Crossref]

Parver, L.M.

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow, III: : reflexive control in human eye,” Arch Ophthalmol 101,1604–1606 (1983).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, and D.O. Carpenter, “The stabilizing effect of the choroidal circulation on the temperature environment of the macula,” Retina 2,117–120 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, D.O. Carpenter, and I. Doyle, “Choroidal blood flow, II: reflexive control in the monkey,” Arch Ophthalmol 100,1327–1330 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in macula,” Am J Ophthalmol 89,641–646 (1980).
[PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
[Crossref]

Pine, D.J.

D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave Spectroscopy,” Phys. Rev. Lett. 60,ll34–ll37 (1988).
[Crossref]

D.A. Weitz and D.J. Pine, Dynamic Light Scattering: The Method and Some Applications (Claredon Press, Oxford, 1993).

Reichel, E.

M.A. Mainster and E. Reichel, “Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins,” Ophthalmic Surg. Lasers 31,359–73 (2000).
[PubMed]

Ricka, J.

L. Rovati, F. Fankhauser II, and J. Ricka, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67,2615–2620 (1996).
[Crossref]

Riva, C.

M. Bonaiuti, C. Riva, and L. Rovati, “Optic nerve blood flow response to flicker can be described by a second order linear system model” in Proceeding ARVO 47 (Invest Opthalmol Vis Sci, Ft. Lauderdale, Florida, 2006), p.493.

Roggan, A.

M. Hammer, A. Roggan, D. Scweitzer, and G. Müller, “Optical properties of ocular fundus tissue-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40,963–978 (1995).
[Crossref] [PubMed]

Romer, S.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Physical Review E 63,0614041–06140411 (2001).
[Crossref]

Rovati, L.

L. Rovati, F. Fankhauser II, and J. Ricka, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67,2615–2620 (1996).
[Crossref]

M. Bonaiuti, C. Riva, and L. Rovati, “Optic nerve blood flow response to flicker can be described by a second order linear system model” in Proceeding ARVO 47 (Invest Opthalmol Vis Sci, Ft. Lauderdale, Florida, 2006), p.493.

Saeed, M.

R.S. Newsom, J.C. McAlister, M. Saeed, and J.D. McHugh, “Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation,” Br J Ophthalmol. 85,173–178 (2001).
[Crossref] [PubMed]

Scheffold, F.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Physical Review E 63,0614041–06140411 (2001).
[Crossref]

Schurtenberger, P.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Physical Review E 63,0614041–06140411 (2001).
[Crossref]

Scweitzer, D.

M. Hammer, A. Roggan, D. Scweitzer, and G. Müller, “Optical properties of ocular fundus tissue-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40,963–978 (1995).
[Crossref] [PubMed]

Skinpetrov, S.E.

S.E. Skinpetrov and R. Maynard, “Dynamic multiple scattering of light in multilayer turbid media,” Phys. Lett. A 217,181–185 (1996).
[Crossref]

Skipetrov, S. E.

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Physical Review E 63,0614041–06140411 (2001).
[Crossref]

Skipetrov, S.E.

S.E. Skipetrov and I.V. Meglinski, “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scatterer flows,” J. Exp. Theor. Phys. 86,661–665 (1998).
[Crossref]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
[Crossref]

Topoleski, L.D.T.

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
[Crossref]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
[Crossref]

Vera, M. U.

P.A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57,4498–4515 (1998).
[Crossref]

Weinberg, W.S.

W.S. Weinberg, R. Birngruber, and B. Lorenz, “The Change in Light Reflection of the Retina During Therapeutic Laser-Photocoagulation determined by histological examination,” IEEE J. Quantum Electron. QE-20,1481–1489 (1984).
[Crossref]

Weitz, D.A.

D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave Spectroscopy,” Phys. Rev. Lett. 60,ll34–ll37 (1988).
[Crossref]

D.A. Weitz and D.J. Pine, Dynamic Light Scattering: The Method and Some Applications (Claredon Press, Oxford, 1993).

Wolf, P.E.

G. Maret and P.E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z Phys. B 65,409–413 (1987).
[Crossref]

Yodh, A.G.

D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlation,” Phys. Rev. Lett. 75,1855–1858 (1995).
[Crossref] [PubMed]

D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density Waves by Spherical Inhomogeneties within Turbid Media: Analytic Solution and Applications,” Proc. Nail. Acad. Sci. USA 91,4887–4891 (1994).
[Crossref]

Yoshida, A.

T. Nagaoka and A. Yoshida, “The effect of ocular warming on ocular circulation in healthy humans,” Arch Ophthalmol 122,1477–1481 (2004).
[Crossref] [PubMed]

Zhu, L.

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

Am J Ophthalmol (1)

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in macula,” Am J Ophthalmol 89,641–646 (1980).
[PubMed]

Am. J. Opthamol. (1)

R.W. Flower, C. Von Kerczek, L. Zhu, A. Ernest, C. Eggleton, and L.D.T. Topoleski, “Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration,” Am. J. Opthamol. 132,85–93 (2001).
[Crossref]

App. Opt. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” App. Opt. 38,3670–3680 (1999).
[Crossref]

Arch Ophthalmol (3)

T. Nagaoka and A. Yoshida, “The effect of ocular warming on ocular circulation in healthy humans,” Arch Ophthalmol 122,1477–1481 (2004).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, D.O. Carpenter, and I. Doyle, “Choroidal blood flow, II: reflexive control in the monkey,” Arch Ophthalmol 100,1327–1330 (1982).
[Crossref] [PubMed]

L.M. Parver, C.R. Auker, and D.O. Carpenter, “Choroidal blood flow, III: : reflexive control in human eye,” Arch Ophthalmol 101,1604–1606 (1983).
[Crossref] [PubMed]

Br J Ophthalmol. (1)

R.S. Newsom, J.C. McAlister, M. Saeed, and J.D. McHugh, “Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation,” Br J Ophthalmol. 85,173–178 (2001).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W.S. Weinberg, R. Birngruber, and B. Lorenz, “The Change in Light Reflection of the Retina During Therapeutic Laser-Photocoagulation determined by histological examination,” IEEE J. Quantum Electron. QE-20,1481–1489 (1984).
[Crossref]

J. Biomed. Opt. (1)

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation,” J. Biomed. Opt. 11,0411111–04111113 (2006).
[Crossref]

J. Colloid Interface Sci. (1)

A.D. Gopal and D.J. Durian, “Shear-Induced “Melting” of an Aqueous Foam,” J. Colloid Interface Sci. 213,169–178 (1999).
[Crossref] [PubMed]

J. Exp. Theor. Phys. (1)

S.E. Skipetrov and I.V. Meglinski, “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scatterer flows,” J. Exp. Theor. Phys. 86,661–665 (1998).
[Crossref]

Ophthalmic Surg. Lasers (1)

M.A. Mainster and E. Reichel, “Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins,” Ophthalmic Surg. Lasers 31,359–73 (2000).
[PubMed]

Phys. Lett. A (1)

S.E. Skinpetrov and R. Maynard, “Dynamic multiple scattering of light in multilayer turbid media,” Phys. Lett. A 217,181–185 (1996).
[Crossref]

Phys. Med. Biol. (2)

A. Kienle, “Non-invasive determination of muscle blood flow in the extremities from laser Doppler spectra,” Phys. Med. Biol. 46,1231–1244 (2001).
[Crossref] [PubMed]

M. Hammer, A. Roggan, D. Scweitzer, and G. Müller, “Optical properties of ocular fundus tissue-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40,963–978 (1995).
[Crossref] [PubMed]

Phys. Rev. B (1)

F.C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B 40,2382–2406 (1989).
[Crossref]

Phys. Rev. E (1)

P.A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57,4498–4515 (1998).
[Crossref]

Phys. Rev. Lett. (2)

D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlation,” Phys. Rev. Lett. 75,1855–1858 (1995).
[Crossref] [PubMed]

D.J. Pine, D.A. Weitz, P.M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave Spectroscopy,” Phys. Rev. Lett. 60,ll34–ll37 (1988).
[Crossref]

Physical Review E (1)

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Physical Review E 63,0614041–06140411 (2001).
[Crossref]

Proc. Nail. Acad. Sci. USA (1)

D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density Waves by Spherical Inhomogeneties within Turbid Media: Analytic Solution and Applications,” Proc. Nail. Acad. Sci. USA 91,4887–4891 (1994).
[Crossref]

Retina (1)

L.M. Parver, C.R. Auker, and D.O. Carpenter, “The stabilizing effect of the choroidal circulation on the temperature environment of the macula,” Retina 2,117–120 (1982).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

L. Rovati, F. Fankhauser II, and J. Ricka, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67,2615–2620 (1996).
[Crossref]

Z Phys. B (1)

G. Maret and P.E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z Phys. B 65,409–413 (1987).
[Crossref]

Other (2)

D.A. Weitz and D.J. Pine, Dynamic Light Scattering: The Method and Some Applications (Claredon Press, Oxford, 1993).

M. Bonaiuti, C. Riva, and L. Rovati, “Optic nerve blood flow response to flicker can be described by a second order linear system model” in Proceeding ARVO 47 (Invest Opthalmol Vis Sci, Ft. Lauderdale, Florida, 2006), p.493.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Photon migration through the ocular fundus tissue. The “banana shaped” light red region represents the distribution of photons, which travel through the tissue from the illumination to the collection optics.

Fig. 2.
Fig. 2.

Picture of the modified ophthalmic microscope (a); the ophthalmic microscope, the 30/70 beam splitter and the custom made fiber adapters including the collimation lenses are shown. Pigmented rabbit fundus (b). The green spot represents the laser heated area of about 4 mm in diameter whereas the red spots correspond to the illumination and the collections sites of the DWS system.

Fig. 3.
Fig. 3.

Electric field autocorrelation functions obtained before (●), after 30 seconds (■) and at the end (Þ) of the thermal laser treatment (a) and the corresponding dimensionless mean-squared displacements of the scattering sites (b). In the short delay range (red region) the main contribution becomes from scattering sites in the choroids whereas in the long delay range (blue region) becomes from scattering sites in the retina.

Fig. 4.
Fig. 4.

Diffusion coefficient of scatterers in the retina (a), diffusion coefficient of the scatterers in the choroids (b) and Gaussian mean square velocity of the scatterers in the choroids (c). Empty squares represent the data collected during the thermal laser treatment whereas the bold squares data were collected before and after the treatment. The solid curve in (a) represents the exponential fitting to data whereas the dashed curves in (b) and (c) are guide lines for the eye through the experimental points

Tables (1)

Tables Icon

Table 1. Optical properties of bovine retina at 633 nm measured by Hammer et al. [5]

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

μ s = ( 1 g ) μ s ,
l * = ( μ a + μ s ) 1 ,
ρ ( τ ) = k 2 Δ r 2 ( τ ) ,
g 1 ( τ ) = Γ P ( s ) e ρ ( τ ) γ ( s ) 3 l * ( s ) ds ,
P ( s ) = δ ( s s o ) ,
g 1 ( τ ) = e ρ ( τ ) i = 1 6 γ ( s i ) 3 l * ( s i ) = e ρ ( τ ) 2 i = 1 3 γ ( s i ) 3 l i * ,
ρ ( τ ) = 3 2 l 1 * l 2 * l 3 * γ 1 l 2 * l 3 * + γ 2 l 1 * l 3 * + γ 3 l 1 * l 2 * ln ( g 1 ( τ ) ) ,
ρ ( τ ) = k 2 α ( 6 D B τ ) + β ( v 2 τ 2 ) ,
g 2 ( τ ) = 1 + h ( 1 + h ) 2 g 1 ( τ ) + 1 ( 1 + h ) 2 g 1 ( τ ) 2 ,
h = I s I d

Metrics