Abstract

The technique of wavelength scanning digital holographic microscopy (WSDHM) is improved by use of a digital spectral shaping method which is used to suppress the sidelobes of the amplitude modulation function in WSDHM for non-Gaussian-shaped source spectra. Spurious structures caused by sidelobes can be eliminated in tomographic imaging and the performance of the tomographic system greatly improved. Detailed theoretical analysis is given. Both simulation and experimental results are presented to verify the idea.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
    [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-3 (1999).
    [CrossRef]
  3. G. Indebetouw, "Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning," J. Mod. Opt.,  49, 1479-1500 (2002).
    [CrossRef]
  4. E. Wolf, "Three-dimensional structure determination of semitransparent object from holographic data," Opt. Commun. 1, 153-156 (1969).
    [CrossRef]
  5. W. H. Carter, "Computational reconstruction of scattering objects from holograms," J. Opt. Soc. Am. 60, 306-314 (1970).
    [CrossRef]
  6. R. Dändliker and D. Weiss, "Reconstruction of three dimensional refractive index from scattered waves," Opt. Commun. 1, 323-328 (1970).
    [CrossRef]
  7. A. F. Fercher, H. Bartelt, H. Becker, and E. Wiltschko, "Image formation by inversion of scattered field data: experiments and computational simulation," Appl. Opt. 18, 2427-2439 (1979).
    [CrossRef] [PubMed]
  8. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006)
    [CrossRef] [PubMed]
  9. M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000).
    [CrossRef] [PubMed]
  10. M. K. Kim, L. Yu, and C. J. Mann, "Interference techniques in digital holography," J. Opt. A, Pure Appl. Opt. 8, S518-S523 (2006).
    [CrossRef]
  11. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005)
    [CrossRef] [PubMed]
  12. L. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express. 13, 5621-5627 (2005).
    [CrossRef] [PubMed]
  13. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006)
    [CrossRef] [PubMed]
  14. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  15. W. Drexler, U. Morgner, F. X. Krtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "Invivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999)
    [CrossRef]
  16. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber, " Opt. Lett. 26, 608-610 (2001)
    [CrossRef]
  17. Y. Zhang, M. Sato, and N. Tanno, "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes, " Opt. Lett. 26, 205-207 (2001)
    [CrossRef]
  18. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002)
    [CrossRef]
  19. A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
    [CrossRef]
  20. M. Alonso, and G. W. Forbes, "Measures of spread for periodic distributions and the associated uncertainty relations," Am. J. Phys. 69, 340-347 (2001).
    [CrossRef]

2006 (3)

2005 (2)

2003 (1)

A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

2002 (3)

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002)
[CrossRef]

U. Schnars and W. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

G. Indebetouw, "Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning," J. Mod. Opt.,  49, 1479-1500 (2002).
[CrossRef]

2001 (3)

2000 (1)

1999 (2)

1991 (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1979 (1)

1970 (2)

W. H. Carter, "Computational reconstruction of scattering objects from holograms," J. Opt. Soc. Am. 60, 306-314 (1970).
[CrossRef]

R. Dändliker and D. Weiss, "Reconstruction of three dimensional refractive index from scattered waves," Opt. Commun. 1, 323-328 (1970).
[CrossRef]

1969 (1)

E. Wolf, "Three-dimensional structure determination of semitransparent object from holographic data," Opt. Commun. 1, 153-156 (1969).
[CrossRef]

Alonso, M.

M. Alonso, and G. W. Forbes, "Measures of spread for periodic distributions and the associated uncertainty relations," Am. J. Phys. 69, 340-347 (2001).
[CrossRef]

Bartelt, H.

Becker, H.

Bevilacqua, F.

Boppart, S. A.

Carter, W. H.

Chang, W.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Charrière, F.

Chudoba, C.

Colomb, T.

Cuche, E.

Dändliker, R.

R. Dändliker and D. Weiss, "Reconstruction of three dimensional refractive index from scattered waves," Opt. Commun. 1, 323-328 (1970).
[CrossRef]

de Boer, J. F.

Depeursinge, C.

Drexler, W

A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Drexler, W.

Fercher, A F

A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Fercher, A. F.

Flotte, T.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Forbes, G. W.

M. Alonso, and G. W. Forbes, "Measures of spread for periodic distributions and the associated uncertainty relations," Am. J. Phys. 69, 340-347 (2001).
[CrossRef]

Fujimoto, J. G.

Fujimoto, J.G.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ghanta, R. K.

Gregory, K.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hartl, I.

Hee, M.R.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Herminjard, S.

Hitzenberger, C K

A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Huang, D.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Indebetouw, G.

G. Indebetouw, "Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning," J. Mod. Opt.,  49, 1479-1500 (2002).
[CrossRef]

Ippen, E. P.

Juptner, W.

U. Schnars and W. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

Kim, M. K.

M. K. Kim, L. Yu, and C. J. Mann, "Interference techniques in digital holography," J. Opt. A, Pure Appl. Opt. 8, S518-S523 (2006).
[CrossRef]

L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005)
[CrossRef] [PubMed]

L. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express. 13, 5621-5627 (2005).
[CrossRef] [PubMed]

M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000).
[CrossRef] [PubMed]

Ko, T. H.

Krtner, F. X.

Kuehn, J.

Kühn, J.

Lasser, T

A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Li, X. D.

Lin, C.P.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Mann, C. J.

M. K. Kim, L. Yu, and C. J. Mann, "Interference techniques in digital holography," J. Opt. A, Pure Appl. Opt. 8, S518-S523 (2006).
[CrossRef]

Marian, A.

Marquet, P.

Montfort, F.

Morgner, U.

Nassif, N.

Nelson, J. S.

Park, B. H.

Pitris, C.

Puliafito, C.A.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ranka, J. K.

Sato, M.

Schnars, U.

U. Schnars and W. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

Schuman, J.S.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stinson, W.G.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E.A.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tanno, N.

Tripathi, R.

Weiss, D.

R. Dändliker and D. Weiss, "Reconstruction of three dimensional refractive index from scattered waves," Opt. Commun. 1, 323-328 (1970).
[CrossRef]

Wiltschko, E.

Windeler, R. S.

Wolf, E.

E. Wolf, "Three-dimensional structure determination of semitransparent object from holographic data," Opt. Commun. 1, 153-156 (1969).
[CrossRef]

Yu, L.

M. K. Kim, L. Yu, and C. J. Mann, "Interference techniques in digital holography," J. Opt. A, Pure Appl. Opt. 8, S518-S523 (2006).
[CrossRef]

L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005)
[CrossRef] [PubMed]

L. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express. 13, 5621-5627 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Am. J. Phys. (1)

M. Alonso, and G. W. Forbes, "Measures of spread for periodic distributions and the associated uncertainty relations," Am. J. Phys. 69, 340-347 (2001).
[CrossRef]

Appl. Opt. (2)

J. Mod. Opt. (1)

G. Indebetouw, "Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning," J. Mod. Opt.,  49, 1479-1500 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

M. K. Kim, L. Yu, and C. J. Mann, "Interference techniques in digital holography," J. Opt. A, Pure Appl. Opt. 8, S518-S523 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

U. Schnars and W. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002).
[CrossRef]

Opt. Commun. (2)

E. Wolf, "Three-dimensional structure determination of semitransparent object from holographic data," Opt. Commun. 1, 153-156 (1969).
[CrossRef]

R. Dändliker and D. Weiss, "Reconstruction of three dimensional refractive index from scattered waves," Opt. Commun. 1, 323-328 (1970).
[CrossRef]

Opt. Express (1)

Opt. Express. (1)

L. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express. 13, 5621-5627 (2005).
[CrossRef] [PubMed]

Opt. Lett. (7)

Rep. Prog. Phys. (1)

A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Science (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Normalized amplitude modulation function when different wave numbers sampled from 1260nm to 1340nm are used for tomographic imaging with (a) N=25; (b) N=50; and (c) continuously sampled wave numbers.

Fig. 2.
Fig. 2.

Amplitude modulation function with and without Gaussian spectral shaping when 50 wave numbers are scanned from 1260nm to 1340nm; plotted in (a) linear and (b) decibel scale.

Fig. 3.
Fig. 3.

Different α for Gaussian spectral shaping when 50 wave numbers are scanned from 1260nm to 1340nm; plotted in (a) linear and (b) decibel scale.

Fig. 4.
Fig. 4.

Optical apparatus used in the digital holographic microscopy experiments. The Ls are various lenses; BS is a beamsplitter; AP is an aperture and REF is a mirror. F1 or F2 are focal points of lens L1, and Point F2 is also the back focus of L2. The CCD camera captures the image of the interference pattern at the plane S.

Fig. 5.
Fig. 5.

A sequence of contour images at different layers: (a) without; and (b) with Gaussian spectral shaping.

Fig. 6.
Fig. 6.

Comparison of the experimentally obtained AMF with its theoretical value: (a) without and (b) with Gaussian spectral shaping.

Fig. 7.
Fig. 7.

Several contour images of the coin reconstructed (a) without [11] and (b) with Gaussian spectral shaping.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) A ( r p ) exp ( ik r r p ) d 3 r p ,
E ( r ) k A ( r p ) exp ( ik r r p ) d 3 r p
A ( r p ) k exp ( ik r r p ) d 3 r p
A ( r p ) M ( r r p ) d 3 r p
A ( r ) ,
E ( r ) A ( r p ) k = k min k max exp ( ik r r p ) d 3 r p
A ( r p ) exp ( i k - r r p ) sin ( Ndk r r p 2 ) sin ( dk r r p 2 ) d 3 r p ,
M ( r r p ) = sin ( Ndk r r p 2 ) sin ( dk r r p 2 ) .
M - ( r r p ) = sin ( Δ k r r p 2 ) Δ k r r p 2 .
S ( k k - ) = 1 2 π σ k exp [ ( k k - ) 2 2 σ k 2 ] ,
S ( k k - ) dk = 1 ,
E ( r ) k S ( k k ˉ ) A ( r p ) exp ( ik r r p ) d 3 r p . dk
A ( r p ) k S ( k k - ) exp ( ik r r p ) dk . d 3 r p .
S ( n + 1 ) = exp [ 1 2 ( α k 1 + ndk k - ( k N k 1 ) 2 ) 2 ] ,

Metrics