Abstract

We revisit the notion of resolution of an imaging system in the light of a probabilistic concept, the Cramér-Rao bound (CRB). We show that the CRB provides a simple quantitative estimation of the accuracy one can expect in measuring an unknown parameter from a scattering experiment. We then investigate the influence of multiple scattering on the CRB for the estimation of the interdistance between two objects in a typical two-sphere scattering experiments. We show that, contrarily to a common belief, the occurence of strong multiple scattering does not automatically lead to a resolution enhancement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Simonetti, "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Phys. Rev. E 73, (2006).
    [CrossRef]
  2. F. C. Chen and W. C. Chew, "Experimental verification of super resolution in nonlinear inverse scattering," Appl. Phys. Lett. 72, 3080-3082 (1998).
    [CrossRef]
  3. K. Belkebir, A. Sentenac, and P. C. Chaumet, "Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography," J. Opt. Soc. Am. A 23, 586-595 (2006).
    [CrossRef]
  4. P. Blomgren and G. Papanicolaou, "Super-resolution in time-reversal acoustics," J. Acoust. Soc. Am. 111, 230 - 248 (2002).
    [CrossRef] [PubMed]
  5. C. Prada and J. L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of timereversal operator," J. Acoust. Soc. Am. 114, 235 - 243 (2003).
    [CrossRef] [PubMed]
  6. M. Shahram and P. Milanfar, "Imaging below the diffraction limit: A statistical analysis," IEEE Trans. Image Process 13, 677 - 689 (2004).
    [CrossRef]
  7. S. Van Aert, D. Van Dyck, and A. J. den Dekker, "Resolution of coherent and incoherent imaging systems reconsidered - classical criteria and a statistical alternative," Opt. Express 14, 3830-3839 (2006).
    [CrossRef] [PubMed]
  8. P. Refregier, "Noise theory and application to physics from fluctuation to information," chapter statistical estimation, (Springer 2004) pp.167 205.
  9. Y. L. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995).
    [CrossRef] [PubMed]
  10. P. C. Chaumet and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Phys. Rev. B 64, 035422-035429 (2001).
    [CrossRef]

2006

2004

M. Shahram and P. Milanfar, "Imaging below the diffraction limit: A statistical analysis," IEEE Trans. Image Process 13, 677 - 689 (2004).
[CrossRef]

2003

C. Prada and J. L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of timereversal operator," J. Acoust. Soc. Am. 114, 235 - 243 (2003).
[CrossRef] [PubMed]

2002

P. Blomgren and G. Papanicolaou, "Super-resolution in time-reversal acoustics," J. Acoust. Soc. Am. 111, 230 - 248 (2002).
[CrossRef] [PubMed]

2001

P. C. Chaumet and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Phys. Rev. B 64, 035422-035429 (2001).
[CrossRef]

1998

F. C. Chen and W. C. Chew, "Experimental verification of super resolution in nonlinear inverse scattering," Appl. Phys. Lett. 72, 3080-3082 (1998).
[CrossRef]

1995

Belkebir, K.

Blomgren, P.

P. Blomgren and G. Papanicolaou, "Super-resolution in time-reversal acoustics," J. Acoust. Soc. Am. 111, 230 - 248 (2002).
[CrossRef] [PubMed]

Chaumet, P. C.

K. Belkebir, A. Sentenac, and P. C. Chaumet, "Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography," J. Opt. Soc. Am. A 23, 586-595 (2006).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Phys. Rev. B 64, 035422-035429 (2001).
[CrossRef]

Chen, F. C.

F. C. Chen and W. C. Chew, "Experimental verification of super resolution in nonlinear inverse scattering," Appl. Phys. Lett. 72, 3080-3082 (1998).
[CrossRef]

Chew, W. C.

F. C. Chen and W. C. Chew, "Experimental verification of super resolution in nonlinear inverse scattering," Appl. Phys. Lett. 72, 3080-3082 (1998).
[CrossRef]

den Dekker, A. J.

Milanfar, P.

M. Shahram and P. Milanfar, "Imaging below the diffraction limit: A statistical analysis," IEEE Trans. Image Process 13, 677 - 689 (2004).
[CrossRef]

Nieto-Vesperinas, M.

P. C. Chaumet and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Phys. Rev. B 64, 035422-035429 (2001).
[CrossRef]

Papanicolaou, G.

P. Blomgren and G. Papanicolaou, "Super-resolution in time-reversal acoustics," J. Acoust. Soc. Am. 111, 230 - 248 (2002).
[CrossRef] [PubMed]

Prada, C.

C. Prada and J. L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of timereversal operator," J. Acoust. Soc. Am. 114, 235 - 243 (2003).
[CrossRef] [PubMed]

Sentenac, A.

Shahram, M.

M. Shahram and P. Milanfar, "Imaging below the diffraction limit: A statistical analysis," IEEE Trans. Image Process 13, 677 - 689 (2004).
[CrossRef]

Thomas, J. L.

C. Prada and J. L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of timereversal operator," J. Acoust. Soc. Am. 114, 235 - 243 (2003).
[CrossRef] [PubMed]

Van Aert, S.

Van Dyck, D.

Xu, Y. L.

Appl. Opt.

Appl. Phys. Lett.

F. C. Chen and W. C. Chew, "Experimental verification of super resolution in nonlinear inverse scattering," Appl. Phys. Lett. 72, 3080-3082 (1998).
[CrossRef]

IEEE Trans. Image Process

M. Shahram and P. Milanfar, "Imaging below the diffraction limit: A statistical analysis," IEEE Trans. Image Process 13, 677 - 689 (2004).
[CrossRef]

J. Acoust. Soc. Am.

P. Blomgren and G. Papanicolaou, "Super-resolution in time-reversal acoustics," J. Acoust. Soc. Am. 111, 230 - 248 (2002).
[CrossRef] [PubMed]

C. Prada and J. L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of timereversal operator," J. Acoust. Soc. Am. 114, 235 - 243 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Phys. Rev. B

P. C. Chaumet and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Phys. Rev. B 64, 035422-035429 (2001).
[CrossRef]

Other

P. Refregier, "Noise theory and application to physics from fluctuation to information," chapter statistical estimation, (Springer 2004) pp.167 205.

F. Simonetti, "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Phys. Rev. E 73, (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The set-up of the scattering experiment. In the first configuration, the spheres are aligned in the direction of the incident wave vector K 0. The scattered waves (K) are recorded in a 30 degree aperture cone in the scattering plane (ẑ,x̂) around the forward (A) or backward (B) direction. The incident polarization E 0 is perpendicular to the scattering plane. In the second configuration, the sphere alignment is perpendicular to K 0 and only the backward direction is investigated. The polarization E 0 is perpendicular (C1) or parallel (C2) to the scattering plane.

Fig. 2.
Fig. 2.

Relative CRB predicted by a single scattering analysis in different configurations for small spheres (d=0.06λ) and two different indices n=1.1 and n=3.1. The proportionality constants in eq. (10) and (11) have been taken to 1. Changing the index results in a vertical translation of the CRB in the case of additive noise (top), but has no influence in the case of multiplicative noise (bottom).

Fig. 4.
Fig. 4.

Same as Fig. 3 in configuration A (bottom) and B (top). The peaks are due to the zeros of intensity, that make the inverse CRB explode (see eq. 7)

Fig. 3.
Fig. 3.

Evolution of the relative CRB as a function of the normalized sphere interdistance α/λ, in configuration C1 (top) and C2 (bottom). The spheres have diameter 0.06λ and the noise is multiplicative. The curve labelled ‘ni’ (for ‘no interaction’) is the result of ignoring the coupling between the spheres, for the three optical indices.

Fig. 5.
Fig. 5.

Same as Fig. 4 for spheres of diameter 0.3λ. The coupling between the spheres is visible on a wider range as for small spheres. In (a), the peaks occur, again, at the distances that lead to destructive interference between the spheres.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E [ ( α ̂ α ) 2 ] ( E [ α L ( α ) ] 2 ) 1 ,
I j m = I j t + N j , j = 1 , . . , N ,
N j ~ N ( 0 , I 0 2 ) , E [ N i N j ] = I 0 2 δ ij ,
CRB = I 0 2 ( j = 1 N [ α I j t ] 2 ) 1
I j m = I j t N j , j = 1 , . . , N .
N j ~ Γ ( μ , L ) , E [ N i N j ] = μ 2 L δ ij + μ 2 .
CRB = μ 2 L ( j = 1 N [ α I j t I j t ] 2 ) 1
Resolution ( α ) = CRB α 2
I ( K ̂ ) = 2 I s ( K ̂ ) ( 1 + cos [ α Φ ( K ̂ ) ] )
CRB 1 const × Φ min Φ max Φ 2 sin 2 ( α Φ ) 1 + cos ( α Φ ) 2
CRB 1 const × I s Φ min Φ max Φ 2 sin 2 ( α Φ )
I ( K ̂ ) ~ χ ̂ ( K K 0 ) 2 ,

Metrics