Abstract

Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. We have investigated this change in trap stiffness during the updating process by studying the motion of an optically trapped particle in a fluid flow. We found a highly nonlinear behavior of the change in trap stiffness vs. changes in step size. For step sizes up to approximately 300 nm the trap stiffness is decreasing. Above 300 nm the change in trap stiffness remains constant for all step sizes up to one particle radius. This information is crucial for optical force measurements using holographic optical tweezers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002).
    [CrossRef]
  3. D. McGloin, "Optical tweezers: 20 years on," Philos. Trans. R. Soc. London, Ser. A 364, 3521-3537 (2006).
    [CrossRef]
  4. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct.  23, 247-285 (1994).
    [CrossRef]
  5. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996).
    [CrossRef] [PubMed]
  6. J. C. Meiners and S. R. Quake, "Femtonewton force spectroscopy of single extended DNA molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
    [CrossRef] [PubMed]
  7. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  8. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  9. P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
    [CrossRef] [PubMed]
  10. G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
    [CrossRef] [PubMed]
  11. R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
    [CrossRef] [PubMed]
  12. E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
    [CrossRef]
  13. E. Eriksson, J. Scrimgeour, J. Enger, andM. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," Proc. SPIE 6592, 65920P-9 (2007).
    [CrossRef]
  14. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, "Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers," Appl. Opt. 45, 888-896 (2006).
    [CrossRef] [PubMed]
  15. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005).
    [CrossRef] [PubMed]
  16. S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007).
    [CrossRef]
  17. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]

2007 (3)

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

E. Eriksson, J. Scrimgeour, J. Enger, andM. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," Proc. SPIE 6592, 65920P-9 (2007).
[CrossRef]

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

2006 (4)

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, "Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers," Appl. Opt. 45, 888-896 (2006).
[CrossRef] [PubMed]

D. McGloin, "Optical tweezers: 20 years on," Philos. Trans. R. Soc. London, Ser. A 364, 3521-3537 (2006).
[CrossRef]

2005 (2)

C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005).
[CrossRef] [PubMed]

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

2002 (2)

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

2000 (2)

J. C. Meiners and S. R. Quake, "Femtonewton force spectroscopy of single extended DNA molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

1996 (1)

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996).
[CrossRef] [PubMed]

1994 (1)

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct.  23, 247-285 (1994).
[CrossRef]

1992 (1)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

1986 (1)

Akselrod, G. M.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Ashkin, A.

Bjorkholm, J. E.

Blackburn, P.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct.  23, 247-285 (1994).
[CrossRef]

Chu, S.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

Cooper, J.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Cooper, J. M.

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Curtis, J. E.

C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Di Leonardo, R.

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Dziedzic, J. M.

Enger, J.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

E. Eriksson, J. Scrimgeour, J. Enger, andM. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," Proc. SPIE 6592, 65920P-9 (2007).
[CrossRef]

Eriksson, E.

E. Eriksson, J. Scrimgeour, J. Enger, andM. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," Proc. SPIE 6592, 65920P-9 (2007).
[CrossRef]

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

Erjavec, N.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

Finer, J. T.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996).
[CrossRef] [PubMed]

Gibson, G.

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

Girkin, J.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Goksor, M.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Haist, T.

Hanstorp, D.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Hohmann, S.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

Isaacs, N.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Jordan, P.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Keen, S.

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

Kohler, C.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Leach, J.

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Li, C.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Matsudaira, P.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

McGloin, D.

D. McGloin, "Optical tweezers: 20 years on," Philos. Trans. R. Soc. London, Ser. A 364, 3521-3537 (2006).
[CrossRef]

Meiners, J. C.

J. C. Meiners and S. R. Quake, "Femtonewton force spectroscopy of single extended DNA molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

Mirsaidov, U.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Molloy, J. E.

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

Mushfique, H.

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Nordlander, B.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

Nystrom, T.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

Osten, W.

Padgett, M.

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Padgett, M. J.

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

Quake, S. R.

J. C. Meiners and S. R. Quake, "Femtonewton force spectroscopy of single extended DNA molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

Ramser, K.

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

Reicherter, M.

Ruocco, G.

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Schmitz, C. H. J.

Scrimgeour, J.

E. Eriksson, J. Scrimgeour, J. Enger, andM. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," Proc. SPIE 6592, 65920P-9 (2007).
[CrossRef]

Simmons, R. M.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996).
[CrossRef] [PubMed]

Spatz, J. P.

Spudich, J. A.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct.  23, 247-285 (1994).
[CrossRef]

Timp, G.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Timp, K.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Timp, R.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Timp, W.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Tiziani, H.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Wright, A.

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Zhao, Q.

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

Zwick, S.

Annu. Rev. Biophys. Biomol. (1)

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct.  23, 247-285 (1994).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (3)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006).
[CrossRef] [PubMed]

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996).
[CrossRef] [PubMed]

Contemp. Phys. (1)

J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

J. Opt. A-Pure Appl. Opt. (1)

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

Lab Chip (2)

E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007).
[CrossRef]

P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Philos. Trans. R. Soc. London, Ser. A (1)

D. McGloin, "Optical tweezers: 20 years on," Philos. Trans. R. Soc. London, Ser. A 364, 3521-3537 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

J. C. Meiners and S. R. Quake, "Femtonewton force spectroscopy of single extended DNA molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. Eriksson, J. Scrimgeour, J. Enger, andM. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," Proc. SPIE 6592, 65920P-9 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A schematic drawing of the experimental setup used to measure the position of a trapped particle in a fluid flow. The laser beam was expanded (lenses L1 and L2, focal lengths f 1=30 mm and f 2=200 mm) to slightly overfill the SLM. A λ/2 plate was used to adjust the polarization direction of the laser to that of the SLM. The size of the beam reflected off the SLMwas then reduced to fit the size of the back aperture of the microscope objective (lenses L3 and L4, focal lengths f 3=600 mm and f 4=200 mm) that focussed the light to form the optical traps.

Fig. 2.
Fig. 2.

An illustration of using HOT tomove a particle fromposition (x, y) to position (x, yy) in the presence of flow in the x-direction. (a) The initial position of the optical trap is at (x, y). (b) The location of the optical trap is updated to (x, yy) and the maximum downstream displacement, Δx, as a function of the step size, Δy, is measured. (c) The bead trapped at the new location.

Fig. 3.
Fig. 3.

Positional data for a bead (2 mm in diameter) trapped in a 50 µm/s flow illustrated as xy scatter plots. Data for Δy=±0.2,0.7,1.4 µm is shown in (a), (b) and (c) respectively. The particle is moved from top to bottom in all of the figures. Note that the displacement due to Stokes drag force, xStokes , can be seen. The aspect ratio of this diagram has been set to 7:1 in order to emphasize Δx.

Fig. 4.
Fig. 4.

The measured downstream displacement, d=xStokes +Δx, as a function of step size for 1.1,2.0 and 5.0 µm diameter particles, subject to a perpendicular fluid flow of 50 µm/s. (a) Distances measured in micrometer and (b) distances normalized to particle radii.

Fig. 5.
Fig. 5.

(a) The measured intensity reflected off the coverslip as the SLM was updated from one hologram to another. While the SLM is updating the hologram, light is diverted away from the trapping region, thus decreasing the measured intensity. The intensity was measured in a region of interest containing both traps, when moving from x=10 µm, y=0 µm to x=10 µm, y=0.2 µm in one step. (b) Left axis (red curve): the dependence of the depth of the intensity decrease on step size (steps are in the positive y direction, starting at x=10 µm, y=0 µm). Right axis (blue curve): The average phase change per pixel between two kinoforms as a function of step size (steps are in the positive y direction, starting at x=10µm, y=0µm), weighted with a Gaussian intensity profile. The curve saturates at a phase shift of 2π/3 (black line).

Fig. 6.
Fig. 6.

Measured total downstream displacement, d=xStokes x, for four different flow rates: 25, 50, 75 and 100 µm/s. The measurements were done with a 2.0 µm diameter particle trapped with approximately 12 mW of laser power. In figure (a) the step size was varied and in figure (b) a phase change was added to the trapping hologram (without updating trap position). Note that the downstream displacements for an average phase shift per pixel of 2π/3 agrees well with with the downstream displacements found for step sizes in the range 300 nm up to one particle radius.

Metrics