Abstract

Multiple scattering is one of the main degrading influences in optical coherence tomography, but to date its presence in an image can only be indirectly inferred. We present a polarization-sensitive method that shows the potential to detect it more directly, based on the degree to which the detected polarization state at any given image point is correlated with the mean state over the surrounding region. We report the validation of the method in microsphere suspensions, showing a strong dependence of the degree of correlation upon the extent to which multiply scattered light is coherently detected. We demonstrate the method’s utility in various tissues, including chicken breast ex vivo and human skin and nailfold in vivo.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  2. J. M. Schmitt and A. Knüttel, "Model of optical coherence tomography of heterogeneous tissue," J. Opt. Soc. Am. A 14, 1231-1242 (1997).
    [CrossRef]
  3. Y. T. Pan, R. Birngruber, and R. Engelhardt, "Contrast limits of coherence-gated imaging in scattering media," Appl. Opt. 36, 2979-2983 (1997).
    [CrossRef] [PubMed]
  4. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, "Multiple-scattering in optical coherence microscopy," Appl. Opt. 34, 5699-5707 (1995).
    [CrossRef] [PubMed]
  5. H. T. Yura and L. Thrane, "The effects of multiple scattering on axial resolution in optical coherence tomography," in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper CThI5.
  6. Q. Lu, X. S. Gan, M. Gu, and Q. M. Luo, "Monte Carlo modeling of optical coherence tomography imaging through turbid media," Appl. Opt. 43, 1628-1637 (2004).
    [CrossRef] [PubMed]
  7. J. M. Schmitt, A. Knüttel, and R. F. Bonner, "Measurement of optical properties of biological tissues by lowcoherence reflectometry," Appl. Opt. 32, 6032-6042 (2004).
    [CrossRef]
  8. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
    [CrossRef] [PubMed]
  9. D. D. Sampson and T. R. Hillman, "Optical coherence tomography," in Lasers and Current Optical Techniques in Biology, G. Palumbo and R. Pratesi, eds. (ESP Comprehensive Series in Photosciences, Cambridge, UK, 2004), pp. 481-571.
  10. K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
    [CrossRef]
  11. A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering," Appl. Opt. 40, 4222-4227 (2001).
    [CrossRef]
  12. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994).
    [CrossRef]
  13. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, "Coherence and polarization of light propagating through scattering media and biological tissues," Appl. Opt. 37, 7357-7367 (1998).
    [CrossRef]
  14. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, "Depolarization of backscattered linearly polarized light," J. Opt. Soc. Am. A 21, 1799-1804 (2004).
    [CrossRef]
  15. M. Xu and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett. 95, 213901 (2005).
    [CrossRef] [PubMed]
  16. J. Ellis and A. Dogariu, "Discrimination of globally unpolarized fields through Stokes vector element correlations," J. Opt. Soc. Am. A 22, 491-496 (2005).
    [CrossRef]
  17. M. I. Mishchenko and J.W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995).
    [CrossRef] [PubMed]
  18. J. M. Schmitt and S. H. Xiang, "Cross-polarized backscatter in optical coherence tomography of biological tissue," Opt. Lett. 23, 1060-1062 (1998).
    [CrossRef]
  19. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized-light to discriminate short-path photons in a multiply scattering medium," Appl. Opt. 31, 6535-6546 (1992).
    [CrossRef] [PubMed]
  20. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
    [CrossRef] [PubMed]
  21. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  22. Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13, 601-611 (2005).
    [CrossRef] [PubMed]
  23. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  24. J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," J. Biomed. Opt. 7, 359-371 (2002).
    [CrossRef] [PubMed]
  25. S. L. Jiao, G. Yao, and L. H. V. Wang, "Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt. 39, 6318-6324 (2000).
    [CrossRef]
  26. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  27. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, "Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4611-4628 (2005).
    [CrossRef] [PubMed]
  28. D. J. Maitland and J. T. Walsh, Jr., "Quantitative measurements of linear birefringence during heating of native collagen," Lasers Surg. Med. 20, 310-318 (1997).
    [CrossRef] [PubMed]
  29. M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 20, 228-230 (1998).
    [CrossRef]
  30. M. G. Ducros, J. D. Marsack, H. G. RylanderIII, S. L. Thomsen, and ThomasE. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 18, 2945-2956 (2001).
    [CrossRef]
  31. X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002).
    [CrossRef] [PubMed]
  32. Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003).
    [CrossRef]
  33. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express 11, 782-793 (2003).
    [CrossRef] [PubMed]
  34. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company, Englewood, Colorado, 2007).
  35. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, "Correlation of static speckle with sample properties in optical coherence tomography," Opt. Lett. 31, 190-192 (2006).
    [CrossRef] [PubMed]
  36. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 22, 552-560 (2005).
    [CrossRef]
  37. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
    [CrossRef]
  38. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, "Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry," J. Opt. Soc. Am. A 20, 333-341 (2003).
    [CrossRef]
  39. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, "Femtosecond transillumination optical coherence tomography," Opt. Lett. 18, 950-952 (1993).
    [CrossRef] [PubMed]
  40. L. Thrane, H. T. Yura, and P. E. Andersen, "Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle," J. Opt. Soc. Am. A 17, 484-490 (2000).
    [CrossRef]
  41. P. Fleckman and C. Allan, "Surgical anatomy of the nail unit," Dermatol. Surg. 27, 257 (2001).
    [PubMed]
  42. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
    [CrossRef]

2006 (1)

2005 (5)

2004 (3)

2003 (4)

A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, "Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry," J. Opt. Soc. Am. A 20, 333-341 (2003).
[CrossRef]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express 11, 782-793 (2003).
[CrossRef] [PubMed]

Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

2002 (3)

X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," J. Biomed. Opt. 7, 359-371 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

1999 (3)

J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

1998 (4)

1997 (3)

1995 (2)

1994 (2)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (2)

Adie, S. G.

Alfano, R. R.

M. Xu and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett. 95, 213901 (2005).
[CrossRef] [PubMed]

Allan, C.

P. Fleckman and C. Allan, "Surgical anatomy of the nail unit," Dermatol. Surg. 27, 257 (2001).
[PubMed]

Andersen, P. E.

Armstrong, J. J.

Backman, V.

Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13, 601-611 (2005).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Birngruber, R.

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Boas, D. A.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Bonner, R. F.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Cense, B.

Colston, B. W.

Da Silva, L. B.

Damaschini, V.

Dasari, R. R.

A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering," Appl. Opt. 40, 4222-4227 (2001).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

de Boer, J. F.

Dogariu, A.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Ducros, M. G.

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Ellis, J.

Engelhardt, R.

Epifanie, M.

Everett, M. J.

Feld, M. S.

A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering," Appl. Opt. 40, 4222-4227 (2001).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Feng, Y.

Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Fleckman, P.

P. Fleckman and C. Allan, "Surgical anatomy of the nail unit," Dermatol. Surg. 27, 257 (2001).
[PubMed]

Fujimoto, J. G.

Gan, X. S.

Gandjbakhche, A. H.

Gu, M.

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Hee, M. R.

Hillman, T. R.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Hovenier, J.W.

Huang, D.

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Izatt, J. A.

Jacobson, J. M.

Jacques, S. L.

Jarry, G.

Jiao, S. L.

Jurczak, M.

Kaiser, R.

Kemp, N. J.

Kim, Y. L.

Knüttel, A.

Lacoste, D.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

Lenke, R.

Li, X.

Liu, Y.

Lu, Q.

Luo, Q. M.

Maitland, D. J.

D. J. Maitland and J. T. Walsh, Jr., "Quantitative measurements of linear birefringence during heating of native collagen," Lasers Surg. Med. 20, 310-318 (1997).
[CrossRef] [PubMed]

Marsack, J. D.

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Milner, T. E.

Mishchenko, M. I.

Nelson, J. S.

Pan, Y. T.

Park, B. H.

Park, J.

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Pierce, M. C.

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

Rojas-Ochoa, L. F.

Rylander, H. G.

Sampson, D. D.

Scheffold, F.

Schmitt, J. M.

Schoenenberger, K.

Schurtenberger, P.

Seemann, V.

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Smith, E. D. J.

Steimer, E.

Swanson, E. A.

Thomas, S. L.

Thomsen, S. L.

Thrane, L.

Walsh, J. T.

D. J. Maitland and J. T. Walsh, Jr., "Quantitative measurements of linear birefringence during heating of native collagen," Lasers Surg. Med. 20, 310-318 (1997).
[CrossRef] [PubMed]

Wang, L. H. V.

Wang, L. V.

X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002).
[CrossRef] [PubMed]

Wang, R. K.

Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003).
[CrossRef]

Wang, X.

X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002).
[CrossRef] [PubMed]

Wax, A.

Wu, L.

Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003).
[CrossRef]

Xiang, S. H.

Xu, M.

M. Xu and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett. 95, 213901 (2005).
[CrossRef] [PubMed]

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Yadlowsky, M. J.

Yang, C. H.

Yang, Y.

Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003).
[CrossRef]

Yao, G.

Yura, H. T.

Zaatari, H. N.

Zvyagin, A. V.

Appl. Opt. (8)

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized-light to discriminate short-path photons in a multiply scattering medium," Appl. Opt. 31, 6535-6546 (1992).
[CrossRef] [PubMed]

Y. T. Pan, R. Birngruber, and R. Engelhardt, "Contrast limits of coherence-gated imaging in scattering media," Appl. Opt. 36, 2979-2983 (1997).
[CrossRef] [PubMed]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, "Multiple-scattering in optical coherence microscopy," Appl. Opt. 34, 5699-5707 (1995).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, and R. F. Bonner, "Measurement of optical properties of biological tissues by lowcoherence reflectometry," Appl. Opt. 32, 6032-6042 (2004).
[CrossRef]

G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, "Coherence and polarization of light propagating through scattering media and biological tissues," Appl. Opt. 37, 7357-7367 (1998).
[CrossRef]

S. L. Jiao, G. Yao, and L. H. V. Wang, "Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt. 39, 6318-6324 (2000).
[CrossRef]

A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering," Appl. Opt. 40, 4222-4227 (2001).
[CrossRef]

Q. Lu, X. S. Gan, M. Gu, and Q. M. Luo, "Monte Carlo modeling of optical coherence tomography imaging through turbid media," Appl. Opt. 43, 1628-1637 (2004).
[CrossRef] [PubMed]

Dermatol. Surg. (1)

P. Fleckman and C. Allan, "Surgical anatomy of the nail unit," Dermatol. Surg. 27, 257 (2001).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

J. Biomed. Opt. (3)

J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," J. Biomed. Opt. 7, 359-371 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (7)

J. Opt. Soc. Am. B (1)

Lasers Surg. Med. (1)

D. J. Maitland and J. T. Walsh, Jr., "Quantitative measurements of linear birefringence during heating of native collagen," Lasers Surg. Med. 20, 310-318 (1997).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Phys. Rev. E (2)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

M. Xu and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett. 95, 213901 (2005).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
[CrossRef]

Other (4)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

H. T. Yura and L. Thrane, "The effects of multiple scattering on axial resolution in optical coherence tomography," in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper CThI5.

D. D. Sampson and T. R. Hillman, "Optical coherence tomography," in Lasers and Current Optical Techniques in Biology, G. Palumbo and R. Pratesi, eds. (ESP Comprehensive Series in Photosciences, Cambridge, UK, 2004), pp. 481-571.

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company, Englewood, Colorado, 2007).

Supplementary Material (2)

» Media 1: MOV (6740 KB)     
» Media 2: MOV (7928 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of a PS-OCT system. BBS: broadband source, PC: polarization controller, PBS: polarizing (fiber) beamsplitter, and PD: photodetector. Fiber and free-space light propagation are represented with the colors dark blue and partially transparent red, respectively. The linear or elliptical polarization state of the light, for both the reference and sample arms, is indicated in light blue. The light reflected or scattered from the sample arm is decomposed into its co- and cross-polarized components. In the output arm of the interferometer, the reference and sample components are distinguished, and the location at which the states are described by the vectors E R and E S is labelled. After the signals are split into vertical and horizontal polarization components, the resulting scalar fields are indicated.

Fig. 2.
Fig. 2.

Movie (6.6 MB) showing the variation in the detected polarization states on the Poincaré sphere, versus depth. Each frame represents a specific optical depth, which is indicated by the position of the vertical magenta line in the OCT envelope image on the left. The states are indicated by partially transparent spheres plotted on the unit sphere (right): green (0.41 µm-3), and dark blue (0.034 µm-3). (The envelope corresponds to the higher concentration, and is plotted on a logarithmic gray-scale.) Rotation of the sphere about the V̂ -axis is performed at the final imaging depth. [Media 1]

Fig. 3.
Fig. 3.

Images of a sample composed of 0.51 µm-diameter polystyrene microspheres in aqueous suspension, at concentration 0.28 µm-3. (a) OCT B-scan envelope image, displayed on a decibel color scale. The magnified region shows the structure of the kernel K 1, displayed on a linear grayscale; (b) Map of the parameter ζ versus position. The magnified region shows the structure of the kernel K 2, displayed on a linear grayscale. (The crosshairs scale applies to both magnified regions.) To emphasize the variation in the parameter ζ, the color scale range is from 0.4 - 1 (indicated), so that all values of the parameter below 0.4 are assigned to the same color; (c) Map of the averaged parameter ζ ¯ versus position.

Fig. 4.
Fig. 4.

(a) Average A-scans for the seven microsphere concentrations, plotted on a decibel scale, relative to the maximum mean signal; (b) Mean value of ζ ¯ (averaged over all lateral scan positions) versus depth, for each concentration; (c) The curves of part (b), displaying only optical depths from 0.5mm to 1mm (those in the vicinity of the confocal gate position), with sample depth (on the axis of abscisscae) scaled according to number of mean-free paths. The legend gives the sphere concentrations in µm-3, and is applicable to all parts of the figure. (The dark blue and green curves correspond to the similarly colored Stokes vector states in Fig. 2.)

Fig. 5.
Fig. 5.

Movie (7.7 MB) showing the variation in polarization states detected at different depths in a sample of chicken breast. Each frame does not represent the same optical depth over all axial scans, because the rate of birefringence varies slightly between them. To accommodate this, a slowly deforming “leading edge,” selecting “in-phase” regions (with respect to the birefringence beating effect), is plotted on maps of both the OCT envelope signal (upper left), and the parameter Û (lower left). For each frame, this edge links the locations from which the Stokes vectors were obtained. The Stokes vectors are plotted as translucent spheres, with the mean state indicated with a green arrow. (Its path is traced out on the sphere for convenience.) [Media 2]

Fig. 6.
Fig. 6.

Chicken breast sample. (a), (b), (c): Displayed images of normalized Stokes parameters Q̂, Û, V̂, respectively, versus sample position; (d), (e): Two-dimensional maps of detected envelope signal (on a decibel color scale), and ζ ¯ parameter, respectively; (f), (g): Mean (over all lateral positions) detected envelope signal, and ζ ¯ parameter, versus optical depth, respectively.

Fig. 7.
Fig. 7.

(a), (b): In vivo OCT B-scan envelope images of human skin for the two detection channels, plotted on a decibel scale. (c): Map of detected envelope signal (on a decibel scale); (d): Map of ζ ¯ parameter; (e): Mean detected envelope signal; (f): Mean ζ ¯ .

Fig. 8.
Fig. 8.

Human nailfold sample: (a) OCT B-scan displaying the detected envelope signal (on a decibel scale); (b) Map of ζ ¯ parameter, versus position; (c) Combination of previous plots, utilizing the intensity information from (a), after decreasing the image brightness, and the hue information from (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ˜ 1 = E R 1 ( t ) E S 1 * ( t ) and I ˜ 2 = E R 2 ( t ) E S 2 * ( t ) ,
S ̂ ¯ ( x , z ) S ̂ ( x , y ) K 1 ( x , z ) S ̂ ( x , z ) K 1 ( x , z ) ,
ζ ( x , z ) S ̂ ( x , z ) S ̂ ¯ ( x , z ) ,
ζ ¯ ( x , z ) ζ ( x , z ) K 2 ( x , z ) ,

Metrics