Abstract

A novel application of quantitative phase imaging under linearly polarized light is introduced for studying unstained anisotropic live cells. The method is first validated as a technique for mapping the twodimensional retardation distribution of a well-characterized optical fiber and is then applied to the characterization of unstained isolated cardiac cells. The experimental retardation measurements are in very good agreement with the established Brace-Köhler method, and additionally provide spatially resolved cell birefringence and phase data.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry

Sherazade Aknoun, Pierre Bon, Julien Savatier, Benoit Wattellier, and Serge Monneret
Opt. Express 23(12) 16383-16406 (2015)

Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens

Taeseok Daniel Yang, Kwanjun Park, Yong Guk Kang, Kyoung J. Lee, Beop-Min Kim, and Youngwoon Choi
Opt. Express 24(25) 29302-29311 (2016)

Determination of bending-induced strain in optical fibers by use of quantitative phase imaging

A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrell, and G. Baxter
Opt. Lett. 27(2) 86-88 (2002)

References

  • View by:
  • |
  • |
  • |

  1. M. Mansuripur, Classical Optics and its Applications, (Cambridge University Press Cambridge, 2002).
  2. C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
    [Crossref]
  3. N.H. Hartshorne and A. Stuart, Crystals and the polarising microscope, (Edward Arnold Ltd. London, 1970).
  4. C. K. Hitzenberger, E. Gotzinger, M. Sticker, M Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–789 (2001).
    [Crossref] [PubMed]
  5. T. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510–1519 (2003).
    [Crossref] [PubMed]
  6. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003).
    [Crossref] [PubMed]
  7. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
    [Crossref] [PubMed]
  8. C.C. Montarou, T.K. Gaylord, B.L. Bachim, A.I. Dachevski, and A. Agarwal, “Two-wave plate compensator method for full-field retardation measurements,” Appl. Opt. 45, 271–280 (2006).
    [Crossref] [PubMed]
  9. F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibers,” J. Opt. A: Pure & Appl. Opt. 1, 197–200 (1999).
    [Crossref]
  10. A. Roberts, K. Thorn, M. L. Michna, N. M. Dragomir, P. M. Farrell, and G. W. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27, 86–88 (2002).
    [Crossref]
  11. N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoel. 153, 217–221 (2006).
    [Crossref]
  12. R. Oldenbourg, “Analysis of edge birefringence,” Biophys. J. 60, 629–641 (1991).
    [Crossref] [PubMed]
  13. C.C. Montarou and T.K. Gaylord, “Two-wave-plate compensator method for single point retardation measurements,” Appl. Opt. 43, 6580–6595 (2004).
    [Crossref]
  14. R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180, 140–147 (1995).
    [Crossref] [PubMed]
  15. Y. Ohtsuka and T. Oka, “Contour mapping of the spatiotemporal state of polarization of light,” Appl. Opt. 33, 2633–2636 (1994).
    [Crossref] [PubMed]
  16. J.G. Pickering and D.R. Boughner, “Quantitative assesement of the age of fibrotic lesions using polarized light microscopy and digital image analysis,” Am. J. Pathol. 138, 1225–1231 (1991).
    [PubMed]
  17. L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
    [Crossref] [PubMed]
  18. C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
    [Crossref]
  19. S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
    [Crossref] [PubMed]
  20. P. Whittaker, “Histological signatures of thermal injury: Applications in transmyocardial laser revascularization and radiofrequency ablation,” Laser. Surg. Med.27 (2000).
    [Crossref]
  21. S.M. Baylor and H. Oetliker, “A large birefringence signal preceding contraction in single twitch fibres of the frog,” J. Physiol. 264, 141–162 (1977).
    [PubMed]
  22. J. Poledna and M. Morad, “Effect of caffeine on the birefringence signal in single skeletal muscle fibers and mammalian heart,” Pflüg. Arch. Eu. J. Physiol. 397, 174–189 (1983).
  23. J. Chayen, L. Bitensky, M.V. Braimbridge, and S. Darracott-Cankovic, “Increased myosin orientation during muscle contraction: A measure of cardiac contractility,” Cell Biochem. & Funct. 3, 101–114 (1985).
    [Crossref] [PubMed]
  24. T. Kobayashi and R.J. Solaro, “Calcium, thin Filaments and the integrative biology of cardiac contractility,” Annu. Rev. Physiol. 67, 39–67 (2005).
    [Crossref] [PubMed]
  25. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
    [Crossref]
  26. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A A2, 121–127 (1985).
    [Crossref]
  27. E.D. Barone-Nugent, A. Barty, and K.A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
    [Crossref] [PubMed]
  28. C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
    [Crossref] [PubMed]
  29. E. Ampem-Lassen, A. Roberts, S. T. Huntington, N. M. Dragomir, and K. A. Nugent, “Refractive index profiling of axisymmetric optical fibres: a new technique,” Opt. Express 13, 3277–3282 (2005).
    [Crossref] [PubMed]
  30. N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
    [Crossref] [PubMed]
  31. N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. (In Press Sep 2007).
    [PubMed]
  32. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press Cambridge, 1999).
  33. T.R. Sliker, “Linear electro-optic effects in class 32,6,3m and 43m crystals,” J. Opt. Soc. Am. A 54, 1348–1351 (1964).
    [Crossref]
  34. M. Irving, “Birefringece changes associated with isomeric contraction and rapid shortening steps in frog skeletal muscle fibres,” J. Physiol. 472, 127–156 (1993).
    [PubMed]
  35. P-S. Jouk, Y. Usson, G. Michalowicz, and F. Parazza, “Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy,” Microsc. Res. Tech. 30, 480–490 (1995).
    [Crossref] [PubMed]
  36. M. Sonka, V. Hlavac, and V. Boyle, Image Processing, Analysis, and Machine Vision, (Chapman and Hall Cambridge, 1993).

2007 (1)

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

2006 (5)

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

C.C. Montarou, T.K. Gaylord, B.L. Bachim, A.I. Dachevski, and A. Agarwal, “Two-wave plate compensator method for full-field retardation measurements,” Appl. Opt. 45, 271–280 (2006).
[Crossref] [PubMed]

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoel. 153, 217–221 (2006).
[Crossref]

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

2005 (3)

2004 (2)

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

C.C. Montarou and T.K. Gaylord, “Two-wave-plate compensator method for single point retardation measurements,” Appl. Opt. 43, 6580–6595 (2004).
[Crossref]

2003 (2)

2002 (2)

2001 (2)

C. K. Hitzenberger, E. Gotzinger, M. Sticker, M Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–789 (2001).
[Crossref] [PubMed]

L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
[Crossref] [PubMed]

1999 (1)

F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibers,” J. Opt. A: Pure & Appl. Opt. 1, 197–200 (1999).
[Crossref]

1998 (1)

1995 (2)

P-S. Jouk, Y. Usson, G. Michalowicz, and F. Parazza, “Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy,” Microsc. Res. Tech. 30, 480–490 (1995).
[Crossref] [PubMed]

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180, 140–147 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (1)

M. Irving, “Birefringece changes associated with isomeric contraction and rapid shortening steps in frog skeletal muscle fibres,” J. Physiol. 472, 127–156 (1993).
[PubMed]

1991 (2)

J.G. Pickering and D.R. Boughner, “Quantitative assesement of the age of fibrotic lesions using polarized light microscopy and digital image analysis,” Am. J. Pathol. 138, 1225–1231 (1991).
[PubMed]

R. Oldenbourg, “Analysis of edge birefringence,” Biophys. J. 60, 629–641 (1991).
[Crossref] [PubMed]

1985 (2)

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A A2, 121–127 (1985).
[Crossref]

J. Chayen, L. Bitensky, M.V. Braimbridge, and S. Darracott-Cankovic, “Increased myosin orientation during muscle contraction: A measure of cardiac contractility,” Cell Biochem. & Funct. 3, 101–114 (1985).
[Crossref] [PubMed]

1983 (1)

J. Poledna and M. Morad, “Effect of caffeine on the birefringence signal in single skeletal muscle fibers and mammalian heart,” Pflüg. Arch. Eu. J. Physiol. 397, 174–189 (1983).

1977 (1)

S.M. Baylor and H. Oetliker, “A large birefringence signal preceding contraction in single twitch fibres of the frog,” J. Physiol. 264, 141–162 (1977).
[PubMed]

1964 (1)

T.R. Sliker, “Linear electro-optic effects in class 32,6,3m and 43m crystals,” J. Opt. Soc. Am. A 54, 1348–1351 (1964).
[Crossref]

Agarwal, A.

Allman, B.E.

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

Ampem-Lassen, E.

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

E. Ampem-Lassen, A. Roberts, S. T. Huntington, N. M. Dragomir, and K. A. Nugent, “Refractive index profiling of axisymmetric optical fibres: a new technique,” Opt. Express 13, 3277–3282 (2005).
[Crossref] [PubMed]

Bachim, B.L.

Barone-Nugent, E.D.

E.D. Barone-Nugent, A. Barty, and K.A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

Barty, A.

E.D. Barone-Nugent, A. Barty, and K.A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

Baxter, G. W.

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoel. 153, 217–221 (2006).
[Crossref]

A. Roberts, K. Thorn, M. L. Michna, N. M. Dragomir, P. M. Farrell, and G. W. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27, 86–88 (2002).
[Crossref]

Baylor, S.M.

S.M. Baylor and H. Oetliker, “A large birefringence signal preceding contraction in single twitch fibres of the frog,” J. Physiol. 264, 141–162 (1977).
[PubMed]

Bellair, C.J.

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

Bitensky, L.

J. Chayen, L. Bitensky, M.V. Braimbridge, and S. Darracott-Cankovic, “Increased myosin orientation during muscle contraction: A measure of cardiac contractility,” Cell Biochem. & Funct. 3, 101–114 (1985).
[Crossref] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press Cambridge, 1999).

Boughner, D.R.

L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
[Crossref] [PubMed]

J.G. Pickering and D.R. Boughner, “Quantitative assesement of the age of fibrotic lesions using polarized light microscopy and digital image analysis,” Am. J. Pathol. 138, 1225–1231 (1991).
[PubMed]

Bouma, B. E.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Boyle, V.

M. Sonka, V. Hlavac, and V. Boyle, Image Processing, Analysis, and Machine Vision, (Chapman and Hall Cambridge, 1993).

Braimbridge, M.V.

J. Chayen, L. Bitensky, M.V. Braimbridge, and S. Darracott-Cankovic, “Increased myosin orientation during muscle contraction: A measure of cardiac contractility,” Cell Biochem. & Funct. 3, 101–114 (1985).
[Crossref] [PubMed]

Bressner, J. E.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Buyze, J.D.

L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
[Crossref] [PubMed]

Chayen, J.

J. Chayen, L. Bitensky, M.V. Braimbridge, and S. Darracott-Cankovic, “Increased myosin orientation during muscle contraction: A measure of cardiac contractility,” Cell Biochem. & Funct. 3, 101–114 (1985).
[Crossref] [PubMed]

Chow, L.H.

L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
[Crossref] [PubMed]

Colomb, T.

Cuche, E.

Curl, C.

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

Dachevski, A.I.

Darracott-Cankovic, S.

J. Chayen, L. Bitensky, M.V. Braimbridge, and S. Darracott-Cankovic, “Increased myosin orientation during muscle contraction: A measure of cardiac contractility,” Cell Biochem. & Funct. 3, 101–114 (1985).
[Crossref] [PubMed]

de Boer, J. F.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Delbridge, L.M.

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

Depeursinge, C.

Dragomir, N. M.

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoel. 153, 217–221 (2006).
[Crossref]

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

E. Ampem-Lassen, A. Roberts, S. T. Huntington, N. M. Dragomir, and K. A. Nugent, “Refractive index profiling of axisymmetric optical fibres: a new technique,” Opt. Express 13, 3277–3282 (2005).
[Crossref] [PubMed]

A. Roberts, K. Thorn, M. L. Michna, N. M. Dragomir, P. M. Farrell, and G. W. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27, 86–88 (2002).
[Crossref]

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. (In Press Sep 2007).
[PubMed]

Dürr, F.

El-Diasty, F.

F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibers,” J. Opt. A: Pure & Appl. Opt. 1, 197–200 (1999).
[Crossref]

Farrell, P. M.

Fercher, A. F.

Finlay, H.

L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
[Crossref] [PubMed]

Gaylord, T.K.

Goh, X. M.

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. (In Press Sep 2007).
[PubMed]

Gotzinger, E.

Halpern, E.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Harris, P.J.

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

Hartshorne, N.H.

N.H. Hartshorne and A. Stuart, Crystals and the polarising microscope, (Edward Arnold Ltd. London, 1970).

Hitzenberger, C. K.

Hlavac, V.

M. Sonka, V. Hlavac, and V. Boyle, Image Processing, Analysis, and Machine Vision, (Chapman and Hall Cambridge, 1993).

Houser, S. L.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Hsu, I.J.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Huntington, S. T.

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

E. Ampem-Lassen, A. Roberts, S. T. Huntington, N. M. Dragomir, and K. A. Nugent, “Refractive index profiling of axisymmetric optical fibres: a new technique,” Opt. Express 13, 3277–3282 (2005).
[Crossref] [PubMed]

Irving, M.

M. Irving, “Birefringece changes associated with isomeric contraction and rapid shortening steps in frog skeletal muscle fibres,” J. Physiol. 472, 127–156 (1993).
[PubMed]

Jouk, P-S.

P-S. Jouk, Y. Usson, G. Michalowicz, and F. Parazza, “Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy,” Microsc. Res. Tech. 30, 480–490 (1995).
[Crossref] [PubMed]

Kaneko, T.

Kiang, Y.W.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Kobayashi, T.

T. Kobayashi and R.J. Solaro, “Calcium, thin Filaments and the integrative biology of cardiac contractility,” Annu. Rev. Physiol. 67, 39–67 (2005).
[Crossref] [PubMed]

Limberger, H. G.

Lu, C.W.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Lu, L.S.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Mansuripur, M.

M. Mansuripur, Classical Optics and its Applications, (Cambridge University Press Cambridge, 2002).

Marquet, P.

Mei, G.

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180, 140–147 (1995).
[Crossref] [PubMed]

Michalowicz, G.

P-S. Jouk, Y. Usson, G. Michalowicz, and F. Parazza, “Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy,” Microsc. Res. Tech. 30, 480–490 (1995).
[Crossref] [PubMed]

Michna, M. L.

Montarou, C.C.

Morad, M.

J. Poledna and M. Morad, “Effect of caffeine on the birefringence signal in single skeletal muscle fibers and mammalian heart,” Pflüg. Arch. Eu. J. Physiol. 397, 174–189 (1983).

Nadkarni, S. K.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Nugent, K. A.

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

E. Ampem-Lassen, A. Roberts, S. T. Huntington, N. M. Dragomir, and K. A. Nugent, “Refractive index profiling of axisymmetric optical fibres: a new technique,” Opt. Express 13, 3277–3282 (2005).
[Crossref] [PubMed]

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

Nugent, K.A.

E.D. Barone-Nugent, A. Barty, and K.A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

Oetliker, H.

S.M. Baylor and H. Oetliker, “A large birefringence signal preceding contraction in single twitch fibres of the frog,” J. Physiol. 264, 141–162 (1977).
[PubMed]

Ohtsuka, Y.

Oka, T.

Oldenbourg, R.

M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003).
[Crossref] [PubMed]

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180, 140–147 (1995).
[Crossref] [PubMed]

R. Oldenbourg, “Analysis of edge birefringence,” Biophys. J. 60, 629–641 (1991).
[Crossref] [PubMed]

Pace, P.

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

Paganin, D.

Parazza, F.

P-S. Jouk, Y. Usson, G. Michalowicz, and F. Parazza, “Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy,” Microsc. Res. Tech. 30, 480–490 (1995).
[Crossref] [PubMed]

Park, B. H.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Pickering, J.G.

L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
[Crossref] [PubMed]

J.G. Pickering and D.R. Boughner, “Quantitative assesement of the age of fibrotic lesions using polarized light microscopy and digital image analysis,” Am. J. Pathol. 138, 1225–1231 (1991).
[PubMed]

Pierce, M. P.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Pircher, M

Poledna, J.

J. Poledna and M. Morad, “Effect of caffeine on the birefringence signal in single skeletal muscle fibers and mammalian heart,” Pflüg. Arch. Eu. J. Physiol. 397, 174–189 (1983).

Roberts, A.

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoel. 153, 217–221 (2006).
[Crossref]

E. Ampem-Lassen, A. Roberts, S. T. Huntington, N. M. Dragomir, and K. A. Nugent, “Refractive index profiling of axisymmetric optical fibres: a new technique,” Opt. Express 13, 3277–3282 (2005).
[Crossref] [PubMed]

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

A. Roberts, K. Thorn, M. L. Michna, N. M. Dragomir, P. M. Farrell, and G. W. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27, 86–88 (2002).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. (In Press Sep 2007).
[PubMed]

Salathé, R. P.

Shribak, M.

Sliker, T.R.

T.R. Sliker, “Linear electro-optic effects in class 32,6,3m and 43m crystals,” J. Opt. Soc. Am. A 54, 1348–1351 (1964).
[Crossref]

Solaro, R.J.

T. Kobayashi and R.J. Solaro, “Calcium, thin Filaments and the integrative biology of cardiac contractility,” Annu. Rev. Physiol. 67, 39–67 (2005).
[Crossref] [PubMed]

Sonka, M.

M. Sonka, V. Hlavac, and V. Boyle, Image Processing, Analysis, and Machine Vision, (Chapman and Hall Cambridge, 1993).

Stevenson, A.J.

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

Sticker, M.

Streibl, N.

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A A2, 121–127 (1985).
[Crossref]

Stuart, A.

N.H. Hartshorne and A. Stuart, Crystals and the polarising microscope, (Edward Arnold Ltd. London, 1970).

Sun, C.W.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Tearney, G. J.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

Thorn, K.

Tsai, M.T.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Usson, Y.

P-S. Jouk, Y. Usson, G. Michalowicz, and F. Parazza, “Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy,” Microsc. Res. Tech. 30, 480–490 (1995).
[Crossref] [PubMed]

Wang, Y.M.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Whittaker, P.

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

P. Whittaker, “Histological signatures of thermal injury: Applications in transmyocardial laser revascularization and radiofrequency ablation,” Laser. Surg. Med.27 (2000).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press Cambridge, 1999).

Wu, C.C.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Yang, C.C.

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

Am. J. Pathol. (1)

J.G. Pickering and D.R. Boughner, “Quantitative assesement of the age of fibrotic lesions using polarized light microscopy and digital image analysis,” Am. J. Pathol. 138, 1225–1231 (1991).
[PubMed]

Annu. Rev. Physiol. (1)

T. Kobayashi and R.J. Solaro, “Calcium, thin Filaments and the integrative biology of cardiac contractility,” Annu. Rev. Physiol. 67, 39–67 (2005).
[Crossref] [PubMed]

Appl. Opt. (5)

Biophys. J. (1)

R. Oldenbourg, “Analysis of edge birefringence,” Biophys. J. 60, 629–641 (1991).
[Crossref] [PubMed]

Cardiovasc. Pathol. (1)

L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay, and J.G. Pickering, “Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis,” Cardiovasc. Pathol. 10, 83–86 (2001).
[Crossref] [PubMed]

Cell Biochem. & Funct. (1)

J. Chayen, L. Bitensky, M.V. Braimbridge, and S. Darracott-Cankovic, “Increased myosin orientation during muscle contraction: A measure of cardiac contractility,” Cell Biochem. & Funct. 3, 101–114 (1985).
[Crossref] [PubMed]

Cell. Physiol. Biochem. (1)

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology,” Cell. Physiol. Biochem. 17, 193–200 (2006).
[Crossref] [PubMed]

Clin. Exp. Pharmacol. P. (1)

C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent, and L.M. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. P. 31, 896–901 (2004).
[Crossref]

IEE Proc. Optoel. (1)

N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoel. 153, 217–221 (2006).
[Crossref]

J. Am. Coll. Cardiol. (1)

S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol. 49, 1474–1481 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser,” J. Biomed. Opt. 11, 54016 (2006).
[Crossref]

J. Microsc. (2)

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180, 140–147 (1995).
[Crossref] [PubMed]

E.D. Barone-Nugent, A. Barty, and K.A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002).
[Crossref] [PubMed]

J. Opt. A: Pure & Appl. Opt. (1)

F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibers,” J. Opt. A: Pure & Appl. Opt. 1, 197–200 (1999).
[Crossref]

J. Opt. Soc. Am. A (2)

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A A2, 121–127 (1985).
[Crossref]

T.R. Sliker, “Linear electro-optic effects in class 32,6,3m and 43m crystals,” J. Opt. Soc. Am. A 54, 1348–1351 (1964).
[Crossref]

J. Physiol. (2)

M. Irving, “Birefringece changes associated with isomeric contraction and rapid shortening steps in frog skeletal muscle fibres,” J. Physiol. 472, 127–156 (1993).
[PubMed]

S.M. Baylor and H. Oetliker, “A large birefringence signal preceding contraction in single twitch fibres of the frog,” J. Physiol. 264, 141–162 (1977).
[PubMed]

Microsc. Res. Tech. (2)

P-S. Jouk, Y. Usson, G. Michalowicz, and F. Parazza, “Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy,” Microsc. Res. Tech. 30, 480–490 (1995).
[Crossref] [PubMed]

N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson, and A. Roberts, “Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Pflüg. Arch. Eu. J. Physiol. (1)

J. Poledna and M. Morad, “Effect of caffeine on the birefringence signal in single skeletal muscle fibers and mammalian heart,” Pflüg. Arch. Eu. J. Physiol. 397, 174–189 (1983).

Other (6)

P. Whittaker, “Histological signatures of thermal injury: Applications in transmyocardial laser revascularization and radiofrequency ablation,” Laser. Surg. Med.27 (2000).
[Crossref]

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. (In Press Sep 2007).
[PubMed]

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press Cambridge, 1999).

M. Sonka, V. Hlavac, and V. Boyle, Image Processing, Analysis, and Machine Vision, (Chapman and Hall Cambridge, 1993).

N.H. Hartshorne and A. Stuart, Crystals and the polarising microscope, (Edward Arnold Ltd. London, 1970).

M. Mansuripur, Classical Optics and its Applications, (Cambridge University Press Cambridge, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Transverse images of a Corning MM optical fiber. Inverted phase images recorded using a polarizer parallel (a) and perpendicular (b) to the fiber axis. The arrows indicate the orientation of the polarizers. (c) Computed 2D retardation map.

Fig. 2.
Fig. 2.

Comparison of the normalized measured transmittance between crossed-polarizers and the normalized transmittance calculated from the retardation of the Corning MM fiber measured by the QPPM method shown in Fig. 1(c).

Fig. 3.
Fig. 3.

Microscopic images of unstained isolated cardiomyocyte. (a) Phase image recorded using the polarizer parallel to the long axis of the cell; (b) Computed 2D retardation map using QPPM. The map is representative of the subtle changes due to the molecular organization occurring at submicroscopic scale within the cell.

Fig. 4.
Fig. 4.

Comparison of the transmittance between crossed-polarizers (a) measured and (b) computed from retardation image illustrated in Fig. 3(b). The arrows indicate the orientation of the polarizers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = ( ϕ ϕ ) .
I ( x , y ) = I 0 ( x , y ) sin 2 ( Γ ( x , y ) 2 ) ,
Γ s = Γ c sin ( 2 θ c ) ,

Metrics