Abstract

We report an optical probe based on a single double-clad fiber (DCF), which is suitable for fluorescence spectroscopy. The excitation light is delivered through the small diameter core of the DCF and the excited fluorescence light is collected by the large diameter inner cladding of the same fiber. To retrieve the signal beam from the inner cladding, we utilize a DCF coupler that couples only the light beams in the inner claddings of two different pieces of DCF. It was found that the separation of the channel for the excited beam from the channel for the excitation beam in the same piece of fiber could diminish the autofluorescence background noise generated by the fiber itself, while maintaining all the benefits of a single-fiber probe system. The usefulness of the DCF probe and the performance of the DCF coupler are then reported by presenting the fluorescence spectrum of a fresh gingko leaf and comparing it with the spectrum taken with conventional methods. The fabrication process of the DCF fiber and the inner cladding mode coupler for it are also presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
    [CrossRef]
  2. O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Analytical Chemistry 74, 2663-2677 (2002).
    [CrossRef] [PubMed]
  3. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
    [CrossRef] [PubMed]
  4. U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. of Biomed. Opt. 8, 121-147 (2003).
    [CrossRef]
  5. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, "Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue," Opt. Lett. 30, 1159-1161 (2005).
    [CrossRef] [PubMed]
  6. Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, "Raman probe using a single hollow waveguide," Opt. Lett. 30, 2942-2944 (2005).
    [CrossRef] [PubMed]
  7. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, "Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy," Opt. Lett. 31, 1911-1913 (2006).
    [CrossRef] [PubMed]
  8. L. Zenteno, "High-Power Double-Clad Fiber Lasers," J. Lightwave Technol. 11, 1435-1446 (1993).
    [CrossRef]
  9. B. H. Lee, and J. Nishii, "Cladding-surrounding interface insensitive long-period grating," Electron. Lett. 34, 1129-1130 (1998).
    [CrossRef]
  10. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, "Enhanced two-photon biosensing with double-clad photonic crystal fibers," Opt. Lett. 28, 1224-1226 (2003).
    [CrossRef] [PubMed]
  11. L. Fu, X. S. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005).
    [CrossRef] [PubMed]
  12. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, "Double-clad fiber for endoscopy," Opt. Lett. 29, 2408-2410 (2004).
    [CrossRef] [PubMed]
  13. C. L. Hagen, J. R. Schmidt, and S. T. Sanders, "Spectroscopic sensing via dual-clad optical fiber," IEEE Sens. J. 6, 1227-1231 (2006).
    [CrossRef]
  14. H. Kim, J. Kim, U. C. Paek, B. H. Lee, and K. T. Kim, "Tunable photonic crystal fiber coupler based on a side-polishing technique," Opt. Lett. 29, 1194-1196 (2004).
    [CrossRef] [PubMed]
  15. C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: An overview," Photosynthetica 38, 483-491 (2000).
    [CrossRef]
  16. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003).
    [CrossRef] [PubMed]
  17. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Light propagation in tissue during fluorescence spectroscopy with single-fiber probes," IEEE J. Sel. Top. Quantum Electron. 7, 1004-1012 (2001).
    [CrossRef]

2006

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

C. L. Hagen, J. R. Schmidt, and S. T. Sanders, "Spectroscopic sensing via dual-clad optical fiber," IEEE Sens. J. 6, 1227-1231 (2006).
[CrossRef]

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, "Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy," Opt. Lett. 31, 1911-1913 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2002

O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Analytical Chemistry 74, 2663-2677 (2002).
[CrossRef] [PubMed]

2001

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Light propagation in tissue during fluorescence spectroscopy with single-fiber probes," IEEE J. Sel. Top. Quantum Electron. 7, 1004-1012 (2001).
[CrossRef]

2000

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: An overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

1998

B. H. Lee, and J. Nishii, "Cladding-surrounding interface insensitive long-period grating," Electron. Lett. 34, 1129-1130 (1998).
[CrossRef]

1993

L. Zenteno, "High-Power Double-Clad Fiber Lasers," J. Lightwave Technol. 11, 1435-1446 (1993).
[CrossRef]

Addison, C. J.

Arifler, D.

Bachmann, L.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Baker, J. R.

Blades, M. W.

Bouma, B. E.

Bouwmans, G.

Buschmann, C.

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: An overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

Chang, S. K.

Ediger, M. N.

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Light propagation in tissue during fluorescence spectroscopy with single-fiber probes," IEEE J. Sel. Top. Quantum Electron. 7, 1004-1012 (2001).
[CrossRef]

Fu, L.

Gan, X. S.

Gillenwater, A. M.

Gomes, L.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Gu, M.

Hagen, C. L.

C. L. Hagen, J. R. Schmidt, and S. T. Sanders, "Spectroscopic sensing via dual-clad optical fiber," IEEE Sens. J. 6, 1227-1231 (2006).
[CrossRef]

Hussain, I. A.

Ito, A. S.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Kim, H.

Kim, J.

Kim, K. T.

Knight, B.

Knight, J. C.

Komachi, Y.

Konorov, S. O.

Langsdorf, G.

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: An overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

Lee, B. H.

H. Kim, J. Kim, U. C. Paek, B. H. Lee, and K. T. Kim, "Tunable photonic crystal fiber coupler based on a side-polishing technique," Opt. Lett. 29, 1194-1196 (2004).
[CrossRef] [PubMed]

B. H. Lee, and J. Nishii, "Cladding-surrounding interface insensitive long-period grating," Electron. Lett. 34, 1129-1130 (1998).
[CrossRef]

Lichtenthaler, H. K.

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: An overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

Mack, V.

Matchette, L. S.

Matsuura, Y.

Miyagi, M.

Myaing, M. T.

Nishii, J.

B. H. Lee, and J. Nishii, "Cladding-surrounding interface insensitive long-period grating," Electron. Lett. 34, 1129-1130 (1998).
[CrossRef]

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Light propagation in tissue during fluorescence spectroscopy with single-fiber probes," IEEE J. Sel. Top. Quantum Electron. 7, 1004-1012 (2001).
[CrossRef]

Norris, T. B.

Paek, U. C.

Pavlova, I.

Pfefer, T. J.

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Light propagation in tissue during fluorescence spectroscopy with single-fiber probes," IEEE J. Sel. Top. Quantum Electron. 7, 1004-1012 (2001).
[CrossRef]

Ramanujam, N.

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

Ribeiro, A. D.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Richards-Kortum, R.

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. of Biomed. Opt. 8, 121-147 (2003).
[CrossRef]

Ross, A. M.

Russell, P. S. J.

Sanders, S. T.

C. L. Hagen, J. R. Schmidt, and S. T. Sanders, "Spectroscopic sensing via dual-clad optical fiber," IEEE Sens. J. 6, 1227-1231 (2006).
[CrossRef]

Sato, H.

Schmidt, J. R.

C. L. Hagen, J. R. Schmidt, and S. T. Sanders, "Spectroscopic sensing via dual-clad optical fiber," IEEE Sens. J. 6, 1227-1231 (2006).
[CrossRef]

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Light propagation in tissue during fluorescence spectroscopy with single-fiber probes," IEEE J. Sel. Top. Quantum Electron. 7, 1004-1012 (2001).
[CrossRef]

Schulze, H. G.

Schwarz, R. A.

Tashiro, H.

Tearney, G. J.

Thomas, T.

Turner, R. F. B.

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. of Biomed. Opt. 8, 121-147 (2003).
[CrossRef]

Wadsworth, W. J.

Wolfbeis, O. S.

O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Analytical Chemistry 74, 2663-2677 (2002).
[CrossRef] [PubMed]

Ye, J. Y.

Yelin, D.

Yun, S. H.

Zenteno, L.

L. Zenteno, "High-Power Double-Clad Fiber Lasers," J. Lightwave Technol. 11, 1435-1446 (1993).
[CrossRef]

Zezell, D. M.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Analytical Chemistry

O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Analytical Chemistry 74, 2663-2677 (2002).
[CrossRef] [PubMed]

Appl. Spectrosc. Rev.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, "Fluorescence spectroscopy of biological tissues - A review," Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Electron. Lett.

B. H. Lee, and J. Nishii, "Cladding-surrounding interface insensitive long-period grating," Electron. Lett. 34, 1129-1130 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Light propagation in tissue during fluorescence spectroscopy with single-fiber probes," IEEE J. Sel. Top. Quantum Electron. 7, 1004-1012 (2001).
[CrossRef]

IEEE Sens. J.

C. L. Hagen, J. R. Schmidt, and S. T. Sanders, "Spectroscopic sensing via dual-clad optical fiber," IEEE Sens. J. 6, 1227-1231 (2006).
[CrossRef]

J. Lightwave Technol.

L. Zenteno, "High-Power Double-Clad Fiber Lasers," J. Lightwave Technol. 11, 1435-1446 (1993).
[CrossRef]

J. of Biomed. Opt.

U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. of Biomed. Opt. 8, 121-147 (2003).
[CrossRef]

Neoplasia

N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photosynthetica

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: An overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of a fluorescence spectroscopy system based on the proposed single-DCF probe: SMF, single mode fiber; DCF, double-clad fiber; MMF, multi-mode fiber; ND, neutral-density filter; BP, bandpass filter; C1, C2, collimator lenses; LP, longpass filter.

Fig. 2.
Fig. 2.

Schematic diagram of the DCF coupler. The entire optical beam coming along the core of P1 port is delivered into the core of P2 port, and vice versa. However, a part of the beam coming from P2 port but along the inner cladding of the first fiber F1 is coupled to the inner cladding of the second fiber F2 and directed to P4 port.

Fig. 3.
Fig. 3.

Coupling efficiency of the DCF fiber coupler measured as a function of the wavelength. The left-hand and right-hand inset figures are the near field images taken at the through port and cross port of the DCF coupler, respectively.

Fig. 4.
Fig. 4.

Normalized fluorescence spectra of a fresh gingko leaf under 488 nm excitation, obtained using (a) the proposed DCF probe, (b) the single MMF probe in the configuration of (d), and (c) the direct-pump configuration in (e). BP, bandpass filter; LP, longpass filter.

Fig. 5.
Fig. 5.

The fluorescence intensities measured in terms of the distance from the probe tip to a sample. The measurement was made at a wavelength of 685 nm with the proposed DCF probe (open circles) and a conventional single MMF probe (open triangles). The solid lines are the fitting curves made using exponential functions.

Metrics